Angelica Sinensis and Chinese Arborvitae: A Review on its Phytochemical & Pharmacological Importance

Main Article Content

Halimatul Saadiah Mohammad Noor
Yeasootaa Mohana Raja
Jiyauddin Khan

Abstract

Angelica sinensis and Chinese arborvitae has had a long history of use in traditional Chinese medicinal herbs and have been used to heal various ailments such as heartburn, overnight urination, arthritis, circulation problems and androgenic alopecia, pain, hemorrhoids, abnormally heavy bleeding during menstrual periods and many other conditions. The modern pharmacological studies discovered that these two plants have a wide variety of beneficial attributes for human health. Besides, its importance, a review of this both plants have not been properly assessed in the scientific literature to date. Here, we review and summarize the historic and recent literature concerning the botany, phytochemistry, pharmacological activities, and toxicity of this wonder plant. This summary could be advantageous for future research objective to exploit the therapeutic potential of these beneficial medicinal plants.


 

Article Details

How to Cite
Mohammad Noor, H. S., Yeasootaa Mohana Raja, & Jiyauddin Khan. (2024). Angelica Sinensis and Chinese Arborvitae: A Review on its Phytochemical & Pharmacological Importance. International Journal of Pharmaceutical and Bio Medical Science, 4(3), 234–243. https://doi.org/10.47191/ijpbms/v4-i3-18
Section
Articles

References

I. Wei, W. L., Zeng, R., Gu, C. M., Qu, Y., & Huang, L. F. (2016). Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. Journal of ethnopharmacology, 190, 116–141. https://doi.org/10.1016/j.jep.2016.05.023

II. Fu Liguo, Yu Yongfu, and Robert R. Mill. 1999. Taxodiaceae. In Wu Zheng-yi and Peter H. Raven (eds.). Flora of China, Volume 4. Beijing: Science Press; St. Louis: Missouri Botanical Garden.

III. Wang, Y. L., Liang, Y. Z., Chen, B. M., He, Y. K., Li, B. Y., & Hu, Q. N. (2005). LC-DAD-APCI-MS-based screening and analysis of the absorption and metabolite components in plasma from a rabbit administered an oral solution of danggui. Analytical and bioanalytical chemistry, 383(2), 247–254. https://doi.org/10.1007/s00216-005-0008-7

IV. Wendy L. Zhang, Ken Y. Z. Zheng, Kevin Y. Zhu, Janis Y. X. Zhan, Cathy W. C. Bi, J. P. Chen, Tina T. X. Dong, Roy C. Y. Choi, David T. W. Lau, Karl W. K. Tsim, "Chemical and Biological Assessment of Angelica Roots from Different Cultivated Regions in a Chinese Herbal Decoction Danggui Buxue Tang", Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 483286, 10 pages, 2013. https://doi.org/10.1155/2013/483286

V. Seyed Mehdi Hashemi, and Seyed Ali Safavi. (2012). Chemical Constituents and Toxicity of Essential Oils of Oriental Arborvitae, Platycladus Orientalis (L.) Franco, against Three Stored-Product Beetles. Chilean journal of agricultural research 72(2) https://www.scielo.cl/pdf/chiljar/v72n2/at04.pdf

VI. Zhu, J. X., Wang, Y., Kong, L. D., Yang, C., & Zhang, X. (2004). Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. Journal of ethnopharmacology, 93(1), 133–140. https://doi.org/10.1016/j.jep.2004.03.037

VII. Sakai S, Ochiai H, Nakajima K, Terasawa K. Inhibitory effect of ferulic acid on macrophage inflammatory protein-2 production in a murine macrophage cell line, RAW264.7. Cytokine. 1997;9(4):242–248. doi: 10.1006/cyto.1996.0160.

VIII. Sakai S, Kawamata H, Kogure T, Mantani N, Terasawa K, Umatake M, Ochiai H. Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells. Mediators of Inflammation. 1999;8:173–175. doi: 10.1080/09629359990513.

IX. Liu L, Ning ZQ, Shan S, Zhang K, Deng T, Lu XP, Cheng YY. Phthalide lactones from Ligusticum chuanxiong inhibit lipopolysaccharide induced TNF-α production and TNF-α mediated NF-κB activation. Planta Medicine. 2005;71:808–813. doi: 10.1055/s-2005-871231.

X. Chao WW, Kuo YH, Li WC, Lin BF. The production of nitric oxide and prostaglandin E2 in peritoneal macrophages is inhibited by Andrographis paniculata, Angelica sinensis and Morus alba ethyl acetate fractions. J Ethnopharmacol. 2009;122:68–75. doi: 10.1016/j.jep.2008.11.029.

XI. Chao WW, Hong YH, Chen ML, Lin BF. Inhibitory effects of Angelica sinensis ethyl acetate extract and major compounds on NF-κB trans-activation activity and LPS-induced inflammation. J Ethnopharmacol. 2010;129:244–249. doi: 10.1016/j.jep.2010.03.022.

XII. Tsai NM, Lin SZ, Lee CC, Chen SP, Su HC, Chang WL, Harn HJ. The antitumor effects of Angelica sinensis on malignant brain tumors in vitro and in vivo. Clin Cancer Res. 2005;11:3475–3484. doi: 10.1158/1078-0432.CCR-04-1827. [PubMed]

XIII. Lee WH, Jin JS, Tsai WC, Chen YT, Chang WL, Yao CW, Sheu LF, Chen A. Biological inhibitory effects of the Chinese herb danggui on brain astrocytoma. Pathobiology. 2006;73:141–148. doi: 10.1159/000095560. [PubMed]

XIV. Tsai NM, Chen YL, Lee CC, Lin PC, Cheng YL, Chang WL, Lin SZ, Harn HJ. The natural compound n-butylidenephthaliude derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J of Neurochem. 2006;99:1251–1262. doi: 10.1111/j.1471-4159.2006.04151.x. [Google Scholar]

XV. Chen QC, Lee JP, Jin WY, Youn UJ, Kim HJ, Lee IS, Zhang XF, Song KS, Seong YH, Bae KH. Cytotoxic cocstituents from Angelica sinensis radix. Archives of Pharmacol Res. 2007;30:565–569. doi: 10.1007/BF02977650. [PubMed]

XVI. Kan WLT, Cho CH, Rudd JA, Lin G. Study of the anti-proliferative effects and synergy of phthalides from Angelica sinensis on colon cancer cells. J of Ethnopharmacol. 2008;120:36–43. doi: 10.1016/j.jep.2008.07.027. [PubMed]

XVII. Yu Y, Du JR, Wang CY, Qian ZM. Protection against hydrogen peroxide induced injury by Z-ligustilide in PC12. Exp Brain Res. 2008;184:307–312. doi: 10.1007/s00221-007-1100-3. [Google Scholar]

XVIII. Cao W, Li XQ, Wang X, Fan HT, Zhang XN, Hou Y, Liu SB, Mei QB. A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway. Phytomed. 2010;17:598–605. doi: 10.1016/j.phymed.2009.12.014. [PubMed]

XIX. Yang X, Zhao Y, Lv Y, Yang Y, Ruan Y. Protective effect of polysaccharide fractions from Radix A. sinensis against tert-Butylhydroperoxide induced oxidative injury in murine peritoneal macrophages. J Biochem Mol Biol. 2007;40(6):928–935. doi: 10.5483/BMBRep.2007.40.6.928. [PubMed]

XX. Yang X, Zhao Y, Zhou Y, Lv Y, Mao J, Zhao P. Component and antioxidant properties of polysaccharide fractions isolated from Angelica sinensis (Oliv.) Diels. Biol Pharm Bull. 2007;30(10):1884–1890. doi: 10.1248/bpb.30.1884. [PubMed]

XXI. Yang WJ, Li DP, Li JK, Li MH, Chen YL, Zhang PZ. Synergistic antioxidant activities of eight traditional Chinese herb pairs. Biol Pharm Bull. 2009;32(6):1021–1026. doi: 10.1248/bpb.32.1021. [PubMed]

XXII. Cedric G, Rachel B, Sarah W, Karine A. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem Biophys Res Commun. 2004;318:1072–1078. doi: 10.1016/j.bbrc.2004.04.139. [PubMed]

XXIII. Tang JC, Zhang JN, Wu YT, Li ZX. Effect of the water extract and ethanol extract from traditional Chinese Medicines Angelica sinensis (Oliv.) Diels, Ligusticum chuanxiong Hort. And Rheum palmatum L. on rat liver cytochrome P450 activity. Phytother Res. 2006;20:1046–1051. doi: 10.1002/ptr.1974. [PubMed]

XXIV. Gao QT, Cheung JKH, Choi RCY, Cheung AWH, Li J, Jiang ZY, Duan R, Zhao KJ, Ding AW, Dong TTX, Tsim KWK. A Chinese herbal decoction prepared from Radix Astragali and Radix Angelica sinensis induces the expression of erythropoietin in cultured Hep3B cells. Planta Med. 2008;74:392–395. doi: 10.1055/s-2008-1034322. [PubMed]

XXV. Dietz BM, Liu D, Hagos GK, Yao P, Schinkovitz A, Pro SM, Deng S, Farnsworth NR, Pauli GF, van Breemen RB, Bolton JL. Angelica sinensis and its alkylphthalides induce the detoxification enzyme NADPH: quinine oxidoreductase 1 by alkylating Keap1. Chem Res Toxicol. 2008;21:1939–1948. doi: 10.1021/tx8001274. [PubMed]

XXVI. Leopolsdini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar]

XXVII. Stan, M.S.; Voicu, S.N.; Caruntu, S.; Nica, I.C.; Olah, N.K.; Burtescu, R.; Balta, C.; Rosu, M.; Herman, H.; Hermenean, A.; et al. Antioxidant and anti-inflammatory properties of a Thuja occidentalis mother tincture for the treatment of ulcerative colitis. Antioxidants 2019, 8, 416. [Google Scholar]

XXVIII. Nazir, M.Z.; Chandel, S.; Sehgal, A. In vitro screening of antioxidant potential of Thuja occidentalis. J. Chem. Pharm. Sci. 2016, 8, 283–286. [Google Scholar]

XXIX. Mighri, H.; Hajlaoui, H.; Akrout, A.; Najjaa, H.; Neffati, M. Antimicrobial and antioxidant activities of Artemisia herba-alba essential oil cultivated in Tunisian arid zone. Comptes Rendus Chim. 2010, 13, 380–386. [Google Scholar]

XXX. Mahomoodally, F.; Aumeeruddy-Elalfi, Z.; Venugopala, K.N.; Hosenally, M. Antiglycation, comparative antioxidant potential, phenolic content and yield variation of essential oils from 19 exotic and endemic medicinal plants. Saudi J. Biol. Sci. 2019, 26, 1779–1788. [PubMed]

XXXI. Yogesh, K.; Ali, J. Antioxidant potential of thuja (Thuja occidentalis) cones and peach (Prunus persia) seeds in raw chicken ground meat during refrigerated (4 ± 1 °C) storage. J. Food Sci. Technol. 2014, 51, 1547–1553. [Google Scholar]

XXXII. Silva, I.S.; Nicolau, L.A.D.; Sousa, F.B.M.; de Araújo, S.; Oliveira, A.P.; Araújo, T.S.L.; Souza, L.K.M.; Martins, C.S.; Aquino, P.E.A.; Carvalho, L.L.; et al. Evaluation of anti-inflammatory potential of aqueous extract and polysaccharide fraction of Thuja occidentalis Linn. in mice. Int. J. Biol. Macromol. 2017, 105, 1105–1116. [Google Scholar]

XXXIII. Jahan, N.; Ahmad, M.; Mehjabeen; Zia-ul-haq, M.; Alam, S.M.; Qureshi, M. Antimicrobial screening of some medicinal plants of Pakistan. Pak. J. Bot. 2010, 42, 4281–4284. [Google Scholar]

XXXIV. Jirovetz, L.; Buchbauer, G.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Schmidt, E. Chemical composition, antimicrobial activities and odor descriptions of various Salvia sp. and Thuja sp. essential oils. Ernährung Nutr. 2006, 30, 152–159. [Google Scholar]

XXXV. Tsiri, D.; Graikou, K.; Pobłocka-Olech, L.; Krauze-Baranowska, M.; Spyropoulos, C.; Chinou, I. Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland-antimicrobial activity. Molecules 2009, 14, 4707–4715. [PubMed]

XXXVI. Digrak, M.; Bagci, E.; Alma, M.H. Antibiotic action of seed lipids from five tree species grown in Turkey. Pharm. Biol. 2002, 40, 425–428. [Google Scholar]

XXXVII. Gupta, G.; Srivastava, A.K. In-vitro activity of Thuja occidentalis Linn. against human pathogenic aspergilli. Homoeopath. Herit. 2002, 27, 5–12.

XXXVIII. Bellili, S.; Aouadhi, C.; Dhifi, W.; Ghazghazi, H.; Jlassi, C.; Sadaka, C.; El Beyrouthy, M.; Maaroufi, A.; Cherif, A.; Mnif, W. The influence of organs on biochemical properties of tunisian Thuja occidentalis essential oils. Symmetry 2018, 10, 649. [Google Scholar]

XXXIX. Gohla, S.H.; Zeman, R.A.; Bogel, M.; Jurkiewicz, E.; Schrum, S.; Haubeck, H.D.; Schmitz, H.; Hunsmann, G.; Neth, R.D. Modification of the in vitro replication of the Human Immunodeficiency Virus HIV-1 by TPSg, a Polysaccaride Fraction Isolated from the Cupressaceae Thuja occidentalis L. (Arborvitae). Haematol. Blood Transfus. 1992, 35, 140–149. [Google Scholar]

XL. Gohla, S.H.; Zeman, R.A.; Gartner, S.; Popovic, M.; Jurkiewics, E.; Haubeck, H.D.; Schrum, S.; Gallo, R.C.; Neth, R.D.; Hunsmann, G. Inhibition of the replication of HIV-1 by TPSg, a polysaccharide-fraction isolated from the cupressaceae Thuja occidentalis L. AIDS Res. Hum. Retrovir. 1990, 6, 131. [Google Scholar]

XLI. Bodinet, C.; Freudenstein, J. Effects of an orally applied aqueous-ethanolic extract of a mixture of Thujae occidentalis herba, Baptisiae tinctoriae radix, Echinaceae purpureae radix and Echinaceae pallidae radix on antibody response against sheep red blood cells in mice. Planta Med. 1999, 65, 695–699. [Google Scholar]

XLII. Torres, A.; Vargas, Y.; Uribe, D.; Carrasco, C.; Torres, C.; Rocha, R.; Oyarzun, C.; Martin, R.S.; Quezada, C. Pro-apoptotic and anti-angiogenic properties of the α/β-thujone fraction from Thuja occidentalis on glioblastoma cells. J. Neurooncol. 2016, 128, 9–19. [Google Scholar]

XLIII. Biswas, R.; Mandal, S.K.; Dutta, S.; Bhattacharyya, S.S.; Boujedaini, N.; Khuda-Bukhsh, A.R. Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: Evidences from in vitro studies on A375 cells. Evid. Based Complement. Altern. Med. 2011, 2011, 1–16. [Google Scholar]

XLIV. Sunila, E.S.; Kuttan, G. A preliminary study on antimetastatic activity of Thuja occidentalis L. in mice model. Immunopharmacol. Immunotoxicol. 2006, 28, 269–280. [Google Scholar]

XLV. Saha, S.; Bhattacharjee, P.; Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Khurana, A.; Nayak, D.; Manchanda, R.; Chakrabarty, R.; Das, T.; et al. Contribution of the ROS-p53 feedback loop in thuja induced apoptosis of mammary epithelial carcinoma cells. Oncol. Rep. 2014, 31, 1589–1598. [Google Scholar]

XLVI. Sunila, E.S.; Kuttan, R.; Preethi, K.C.; Kuttan, G. Dynamized preparations in cell culture. Evid. Based Complement. Alternat. Med. 2009, 6, 257–263 [PubMed]

XLVII. Siveen, K.S.; Kuttan, G. Augmentation of humoral and cell mediated immune responses by thujone. Int. Immunopharmacol. 2011, 11, 1967–1975. [PubMed]

XLVIII. Siveen, K.S.; Kuttan, G. Thujone inhibits lung metastasis induced by B16F-10 melanoma cells in C57BL/6 mice. Can. J. Physiol. Pharmacol. 2011, 89, 691–703. [PubMed]

XLIX. Sunila, E.S.; Kuttan, G. A preliminary study on antimetastatic activity of Thuja occidentalis L. in mice model. Immunopharmacol. Immunotoxicol. 2006, 28, 269–280. [Google Scholar]

L. Frenkel, M.; Mishra, B.M.; Sen, S.; Yang, P.; Pawlus, A.; Vence, L.; Leblanc, A.; Cohen, L.; Banerji, P.; Banerji, P. Cytotoxic effects of ultra-diluted remedies on breast cancer cells. Int. J. Oncol. 2010, 36, 395–403. [Google Scholar]

LI. Sunila, E.S.; Hamsa, T.P.; Kuttan, G. Effect of Thuja occidentalis and its polysaccharide on cell-mediated immune responses and cytokine levels of metastatic tumor-bearing animals. Pharm. Biol. 2011, 49, 1065–1073. [Google Scholar]

LII. Dubey, S.K.; Batra, A. Hepatoprotective activity from ethanol fraction of Thuja occidentalis Linn. Asian J. Research Chem. 2008, 1, 32–35. [Google Scholar]

LIII. Saeed, F.; Jahan, N.; Mehjabeen, S.; Alam, S.M.; Ahmad, M. Effects of Thuja Occidentalis extract on histo-pathological parameters in rabbits treated with and without carbon tetrachloride. Br. J. Med. Health Res. 2014, 1, 16–24. [Google Scholar]

LIV. Das, S.; Rani, R. Antioxidant and gastroprotective properties of the fruits of Thuja occidentalis, Linn. Asian J. Biochem. Pharm. Res. 2013, 3, 80–87. [Google Scholar]

LV. Stan, M.S.; Voicu, S.N.; Caruntu, S.; Nica, I.C.; Olah, N.K.; Burtescu, R.; Balta, C.; Rosu, M.; Herman, H.; Hermenean, A.; et al. Antioxidant and anti-inflammatory properties of a Thuja occidentalis mother tincture for the treatment of ulcerative colitis. Antioxidants 2019, 8, 416. [Google Scholar]

LVI. Dubey, S.K.; Barta, A. Antidiabetic activity of Thuja occidentalis Linn. Res. J. Pharm. Technol. 2008, 1, 362–365. [Google Scholar]

LVII. Dubey, S.K.; Batra, A. Role of phenolics in anti-atherosclerotic property of Thuja occidentalis Linn. Ethnobot. Leafl. 2009, 13, 791–800.

LVIII. Stan, M. S., Voicu, S. N., Caruntu, S., Nica, I. C., Olah, N. K., Burtescu, R., Balta, C., Rosu, M., Herman, H., Hermenean, A., & Dinischiotu, A. (2019). Antioxidant and Anti-Inflammatory Properties of a Thuja occidentalis Mother Tincture for the Treatment of Ulcerative Colitis. Antioxidants (Basel, Switzerland), 8(9), 416. https://doi.org/10.3390/antiox8090416

LIX. Hsu, R. J., Peng, K. Y., Hsu, W. L., Chen, Y. T., & Liu, D. W. (2022). Z-Ligustilide Induces c-Myc-Dependent Apoptosis via Activation of ER-Stress Signaling in Hypoxic Oral Cancer Cells. Frontiers in oncology, 12, 824043. https://doi.org/10.3389/fonc.2022.824043