A Brief Overview to Ageing-Related Organ Damage: A Light and Electron Microscopic Approach to Several Systems

Main Article Content

Prof. Mukaddes Eşrefoğlu; M.D

Abstract

Ageing is thought to be a degenerative process caused by accumulated damage leading to cellular dysfunction, tissue, and organ failure, and eventually death. Although aging-related skin changes are considered the most important indicator of ageing, morphological and functional changes occur in all of the internal organs. Most of those changes are directly or indirectly associated with age-related decline of life quality. Histopathological features of the organs of old people are examined in postmortem tissues which are probably affected by diseases alongside ageing itself. Recent studies principally report the cellular changes obtained from rodents. The most commonly reported ageing-related ultrastructural changes are mitochondrial damage, lysosome and lipofuscin accumulation and dilatation or proliferation of endoplasmic reticulum. Here I summarize ageing-related changes in various organs such as skin, brain, heart, kidney, intestines etc. that have been revealed by light and electron microscopic examinations so far. Understanding ageing-related cell and tissue-based changes and related molecular mechanisms will contribute to the development of new strategies to prevent or eliminate age-related organ damage.

Article Details

How to Cite
Eşrefoğlu; M.D, P. M. . (2022). A Brief Overview to Ageing-Related Organ Damage: A Light and Electron Microscopic Approach to Several Systems. International Journal of Pharmaceutical and Bio Medical Science, 2(06), 146–159. https://doi.org/10.47191/ijpbms/v2-i6-07
Section
Articles

References

I. Adamec, E., Mohan, P.S., Cataldo, A.M., Vonsattel, J.P., Nixon, R.A. (2000). Up-regulation of the lysosomal system in experimental models of neuronal injury: implications for Alzheimer’s disease. Neuroscience, 100, 663–675. https://doi.org/10.1016/s0306-4522(00)00281-5.

II. Anantharaju, A., Feller, A., Chedid, A. (2002). Ageing Liver. A review. Gerontology, 48,343-53. https://doi.org.10.1159/000065506.

III. Anderton BH. (2002). Ageing of the brain. Mech Ageing Dev. 123, 811-7. https://doi.org.10.1016/s0047-6374(01)00426-2.

IV. Angleda, P., Vyas, S., Hirsch, E.C., Agid, Y. (1997). Apoptosis in dopaminergic neurons of the human substantia nigra during normal ageing. Histol Histopathol. 12, 603–610.

V. Azman, K.F., Safdar, A., Zakaria, R. (2021). D-galactose-induced liver ageing model: Its underlying mechanisms and potential therapeutic interventions. Exp Gerontol. 150,111372. https://doi.org.10.1016/j.exger.2021.111372.

VI. Babušíková, E., Jeseňák, M., Dobrota, D., Tribulová, N., Kaplán P. (2008). Age-dependent effect of oxidative stress on cardiac sarcoplasmic reticulum vesicles. Physiol Res. 57, S49–S54. https://doi.org/10.33549/physiolres.931551.

VII. Bhutto, A., Morley, J.E. (2008). The clinical significance of gastrointestinal changes with ageing. Curr Opin Clin Nutr Metab Care. 11, 651-60. https://doi.org./10.1097/MCO.0b013e32830b5d37.

VIII. Boveris, A., Costa, L., Cadenas, E. (1999). The mitochondrial production of oxygen radicals and cellular ageing, In: Cadenas, E., Packer, L. (Eds), Understanding the Process of Ageing (pp:1-16). Dekker., New York.

IX. Bratic, A., Larsson, N.G. (2013). The role of mitochondria in ageing. J Clin Invest. 123,951-7. https://doi.org./10.1172/JCI64125.

X. Burke, S.N., Barnes, C.A. (2006). Neural plasticity in the ageing brain. Nat Rev Neurosci. 7, 30-40. https://doi.org/10.1038/nrn1809.

XI. Cebe, T., Yanar, C., Atukeren, P., Ozan, T., Kuruc, A.I., Kunbaz, A., Sitar, M.E., Mengi, M., Aydin, M.S., Esrefoglu, M., Aydin, S., Cakatay, U. (2014). A comprehensive study of myocardial redox homeostasis in naturally and mimetically aged rats. Age. 36, 9728. https://doi.org/10.1007/s11357-014-9728-y.

XII. Christen, Y. (2000). Oxidative stress and Alzheimer disease. Am J Clin Nutr. 71, 621S–629S. https://doi.org/10.1093/ajcn/71.2.621s.

XIII. de Waard, M.C., van der Pluijm, I., Borgesius, N.Z., Comley, L.H., Haasdijk, E.D., Rijksen, Y., Ridwan, Y., Zondag, G., Hoeijmakers, J.H.J., Elgersma, Y., Gillingwater, T.H., Jaarsma, D. (2010). Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol. 120, 461-75. https://doi.org/10.1007/s00401-010-0715-9.

XIV. Dontas, A.S., Merketos, S.G., Papanayioutou, P. (1972). Mechanisms of renal tubular defects in old age. J Postgrad Med, 48, 295–303. https://doi.org/10.1136/pgmj.48.559.295.

XV. Esiri, M.M. (2007). Ageing and the brain. J Pathol, 211, 181–187. https://doi.org/10.1002/path.2089.

XVI. Esposito, C., Canton, D.A. (2010). Functional changes in the ageing kidney. J Nephrol, 23Suppl 15, S41–45.

XVII. Esrefoglu, M., Seyhan, M., Gul, M., Parlakpinar, H., Batcioglu, K., Uyumlu, B. (2005). Potent therapeutic effect of melatonin on ageing skin in pinealectomized rats. J Pineal Res, 39,231-237. https://doi.org/10.1111/j.1600-079X.2005.00235.x.

XVIII. Esrefoglu, M., Gul, M., Seyhan, M., Parlakpinar, H. (2006). Ultrastructural clues for the potent therapeutic effect of melatonin on ageing skin in pinealectomized rats. Fund Clin Pharmacol, 20, 605-611. https://doi.org/10.1111/j.1472-8206.2006.00439.x.

XIX. Esrefoglu, M., Gu,l M., Ates, B., Yilmaz, I. (2010). The ultrastructural and biochemical evidence of the beneficial effects of chronic caffeic acid phenethyl ester and melatonin administration on brain and cerebellum of aged rats. Fund Clin Pharmacol, 24, 305-315. https://doi.org/10.1111/j.1472-8206.2009.00782.x.

XX. Esrefoglu, M., Gul, M., Ates, B., Erdogan, A. (2011). The effects of caffeic acid phenethyl ester and melatonin on age-related vascular remodeling and cardiac damage. Fund Clin Pharmacol, 25, 580–90. https://doi.org/10.1111/j.1472-8206.2010.00876.x.

XXI. Esrefoglu, M., Iraz, M., Ateş, B., Gul, M. (2012). Not only melatonin but also caffeic acid phenethyl ester protects kidneys against ageing-related oxidative damage in Sprague Dawley rats. Ultrastruct. Pathol, 36, 244-51. https://doi.org/10.3109/01913123.2012.679351.

XXII. Farinati, F., Formentini, S., Libera, G.D., Valiante, F., Fanton, M.C., Di Mario, F., Vianello, F., Pilotto, A., Naccarato, R. (1993). Changes in parietal and mucous cell mass in the gastric mucosa of normal subjects with age: a morphometric study. Gerontology, 39,146-51. https://doi.org/10.1159/000213526.

XXIII. Foncin, J.F. (1981). [Classical and ultrastructural neuropathology of ageing processes in the human: a critical review (author's transl)]. Rev Electroencephalogr Neurophysiol Clin, 10, 215-27. https://doi.org/10.1016/s0370-4475(80)80003-7.

XXIV. García, M.L., Fernández, A., Solas, M.T. (2013). Mitochondria, motor neurons and ageing. J Neurol Sci, 330,18-26. https://doi.org/10.1016/j.jns.2013.03.019.

XXV. Grønbech, J.E., Lacy, E.R. (1995). Role of gastric blood flow in impaired defense and repair of aged rat stomachs. Am J Physiol, 269, G737–G744. https://doi.org/10.1152/ajpgi.1995.269.5.G737.

XXVI. Hollander, D., Tarnawski, A., Stachura, J., Gergely, H. (1989). Morphologic changes in gastric mucosa of ageing rats. Dig Dis Sci, 34,1692-700. https://doi.org/10.1007/BF01540046.

XXVII. Holt, P.R., Pascal, R.R., Kotler, D.P. (1984). Effect of ageing upon small intestinal structure in the Fischer rat. J Gerontol, 39, 642–647. https://doi.org/10.1093/geronj/39.6.642.

XXVIII. Hoshino, A., Mita, Y., Okawa, Y., Ariyoshi, M., Iwai-Kanai, E., Ueyama, T., Ikeda, K., Ogata, T., Matoba, S. (2013). Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun, 4, 2308. https://doi.org/10.1038/ncomms3308.

XXIX. Isaev, N.K., Genrikhs, E.E., Oborina, M.V., Stelmashook, E.V. (2018). Accelerated ageing and ageing process in the brain. Rev Neurosci, 29, 233-240. https://doi.org/10.1515/revneuro-2017-0051.

XXX. Judge, S., Jang, Y.M., Smith, A., Hagen, T., Leeuwenburgh, C. (2005). Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for themitochondrial theory of ageing. FASEB J, 19, 419–421. https://doi.org/10.1096/fj.04-2622fje.

XXXI. Kaplan, P., Babusikova, E., Lehotsky, J., Dobrota, D. (2003). Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Mol Cell Biochem, 248, 41–47. https://doi.org/10.1023/a:1024145212616.

XXXII. Kaplan, C., Pasternack, B., Shah, H., Gallo, G. (1975). Age-related incidence of sclerotic glomeruli in human kidneys. Am J Pathol, 80, 227-34.

XXXIII. Kremers, W.K., Denic, A., Lieske, J.C., Alexander, M.P., Kaushik, V., Elsherbiny, H.E., Chakkera, H.A., Poggio, E.D., Rule, A.D. (2015). Distinguishing age-related from disease-related glomerulosclerosis on kidney biopsy: the ageing kidney anatomy study. Nephrol Dial Transplant, 30, 2034–2039. https://doi.org/10.1093/ndt/gfv072.

XXXIV. Kuilman, T., Michaloglou, C., Mooi, W.J., Peeper, D.S.(2010). The essence of senescence. Genes Dev, 24, 2463–2479. https://doi.org/10.1101/gad.1971610.

XXXV. Langton, A.K., Alessi, S., Hann, M., Chien, A.L.L., Kang, S., Griffiths, C.E.M. , Watson, R.E.B. (2019). Ageing in skin of color: Disruption to elastic fiber organization is detrimental to skin's biomechanical function. J Invest Dermatol, 2019, 139,779-788. https://doi.org/10.1016/j.jid.2018.10.026.

XXXVI. Lee, M., Feldman, M. (1994). Age-related reductions in gastric mucosal prostaglandin levels increase susceptibility to aspirin-induced injury in rats. Gastroenterology, 107, 1746–1750. https://doi.org/10.1016/0016-5085(94)90816-8.

XXXVII. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., Abete, P. (2018). Oxidative stress, ageing, and diseases. Clin Interv Ageing, 13, 757-772. https://doi.org/10.2147/CIA.S158513.

XXXVIII. Lindeman, R.D., Goldman, R.(1986). Anatomic and physiologic age changes in the kidney, Exp Gerentol, 21, 379–406. https://doi.org/10.1016/0531-5565(86)90044-6.

XXXIX. Lipski, P.S., Bennett, M.K., Kelly, P.J, James, O.F. (1992). Ageing and duodenal morphometry. J Clin Pathol, 45, 450–452. https://doi.org/10.1136/jcp.45.5.450.

XL. Lovell, C.R., Smolenski, K.A., Duance, V.C., Light, N.D., Young, S., Dyson, M. (1987). Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol, 117, 419-428. https://doi.org/10.1111/j.1365-2133.1987.tb04921.x.

XLI. Lynch, D.B., Jeffery, I.B., O’Toole PW. (2015). The role of the microbiota in ageing: current state and perspectives. Wiley Interdiscip Rev Syst Biol Med, 7, 131–138. https://doi.org/10.1002/wsbm.1293.

XLII. Łysek-Gładysińska, M., Wieczorek, A., Jóźwik, A., Walaszczyk, A., Jelonek, K., Szczukiewicz-Markowska, G., Horbańczu,k O.K., Pietrowska, M., Widłak, P., Gabryś, D. (2021). Ageing-Related Changes in the Ultrastructure of Hepatocytes and Cardiomyocytes of Elderly Mice Are Enhanced in ApoE-Deficient Animals. Cells, 10, 502. https://doi.org/10.3390/cells10030502.

XLIII. Maeso-Díaz, R., Ortega-Ribera, M., Fernández-Iglesias, A., Hide, D., Muñoz, L., Hessheimer, A.J., Vila, S., Francés, R., Fondevila, C., Albillos, A., Peralta, C., Bosch, J., Tacke, F., Cogger, V.C., Gracia-Sancho, J. (2018). Effects of ageing on liver microcirculatory function and sinusoidal phenotype. Aging Cell, 17, e12829. https://doi.org/10.1111/acel.12829.

XLIV. Mann, D.M., Yates, P.O., Stamp, J.E. (1978). The relationship between lipofuscin pigment and ageing in the human nervous system. J Neurol Sci, 37, 83-93. https://doi.org/10.1016/0022-510x(78)90229-0.

XLV. Martin, K., Kirkwood, T.B., Potten, C.S. (1998). Age changes in stem cells of murine small intestinal crypts. Exp Cell Res, 241, 316–323. https://doi.org/10.1006/excr.1998.4001.

XLVI. McGee, M.D., Weber, D., Day, N., Vitelli, C., Crippen, D., Herndon, L.A., Hall, D.H., Melov, S. (2011). Loss of intestinal nuclei and intestinal integrity in ageing C. elegans. Aging Cell, 10, 699-710. https://doi.org/10.1111/j.1474-9726.2011.00713.x.

XLVII. Meschiari, C.A., Ero, O.K., Pan, H., Finkel, T., Lindsey, M.L. (2017 9. The impact of ageing on cardiac extracellular matrix. Geroscience, 39, 7-18. https://doi.org/10.1007/s11357-017-9959-9.

XLVIII. Montagna, W., Carlisle, K. (1979). Structural changes in ageing human skin. J Invest Dermatol, 73, 47-53. https://doi.org/10.1111/1523-1747.

XLIX. Mrak, R.E., Griffin, S.T., Graham, D.I. (1997). Ageing-associated changes in human brain. J Neuropathol Exp Neurol, 56, 1269-75. https://doi.org/10.1097/00005072-199712000-00001.

L. Newton, J.L. (2005). Effect of age-related changes in gastric physiology on tolerability of medications for older people. Drugs Ageing, 22, 655–661. https://doi.org/10.2165/00002512-200522080-00003.

LI. Newton, J.L., Jordan, N., Pearson, J., Williams, G.V., Allen, A., James, O.F. (2000). The adherent gastric antral and duodenal mucus gel layer thins with advancing age in subjects infected with Helicobacter pylori. Gerontology, 46, 153-7. https://doi.org/ 10.1159/000022151.

LII. Nishimura, A., Shimauchi, T., Tanaka, T., Shimoda, K., Toyama, T., Kitajima, N., Ishikawa, T., Shindo, N., Numaga-Tomita, T., Yasuda, S., Sato, Y., Kuwahara, K., Kumagai, Y., Akaike, T., Ide, T., Ojida, A., Mori, Y., Nishida, M. (2018). Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal, 11, eaat5185. https://doi.org/10.1126/scisignal.aat5185.

LIII. Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M.J., Gundersen, H.J.G., Nyengaard, J.R., Regeur, L. (2003). Ageing and the human neocortex. Exp Gerontol, 38, 95-9. https://doi.org/10.1016/s0531-5565(02)00151-1.

LIV. Parlakpinar, H., Acet, A., Gul, M., Altinoz, E., Esrefoglu, M., Colak, C. (2007). Protective effects of melatonin on renal failure in pinealectomized rats. J Urol, 14, 743-48. https://doi.org/ 10.1111/j.1442-2042.2007.01806.x.

LV. Pearson, B.N., Ijaz, U.Z., D’Amore, R., Burkitt, M.D., Eccles, R., Lenzi, L., Duckworth, C.A., Moore, A.R., Tiszlavicz, L., Varro, A., Hall, N., Pritchard, D.M. (2017). Comparison of the human gastric microbiota in hypochlorhydric states arising as a result of Helicobacter pylori-induced atrophic gastritis, autoimmune atrophic gastritis and proton pump inhibitor use. PLoS Pathol, 13, e1006653. https://doi.org/10.1371/journal.ppat.1006653.

LVI. Pelvig, D.P., Pakkenberg, H., Stark, A.K., Pakkenberg, B. (2008). Neocortical glial cell numbers in human brains. Neurobiol Ageing, 29, 1754-62. https://doi.org/10.1016/j.neurobiolaging.2007.04.013.

LVII. Peters, A., Kemper, T. (2012). A review of the structural alterations in the cerebral hemispheres of the ageing rhesus monkey. Neurobiol Ageing, 33, 2557-72. https://doi.org/10.1016/j.neurobiolaging.2011.11.015.

LVIII. Pibiri, M. (2018). Liver regeneration in aged mice: New insights. Aging (Albany NY), 10, 1801–1824. https://doi.org/10.18632/aging.101524

LIX. Pollack, M., Leeuwenburgh, C. (2001). Apoptosis and ageing: role of the mitochondria. J Gerontol A Biol Sci Med Sci, 56, B475-82. https://doi.org/10.1093/gerona/56.11.b475.

LX. Renovell, A., Giner, J., Portoles, M. (1996). Loss of granule neurons in the ageing human cerebellar cortex. Int J Dev Biol, Suppl 1, 193S–194S.

LXI. Schneider, A.M., Özsoy, M., Zimmermann, F.A., Feichtinger, R.G., Mayr, J.A., Kofler, B., Sperl, W., Weghuber, D., Mörwald, K. (2020). Age-Related Deterioration of Mitochondrial Function in the Intestine. Oxid Med Cell Longev, 2020, 4898217. https://doi.org/10.1155/2020/4898217.

LXII. Schultz, C., Ghebremedhin, E., Tredici, K.D., Rüb, U., Braak, H. (2004). High prevalence of thorn-shaped astrocytes in the aged human medial temporal lobe. Neurobiol Ageing, 25, 397-405. https://doi.org/10.1016/S0197-4580(03)00113-1.

LXIII. Sergiev. P.V., Dontsova, O.A., Berezkin, G.V. (2015). Theories of ageing: an ever-evolving field. Acta Naturae, 7, 9–18. PMID: 25926998.

LXIV. Shadyab, A.H., LaCroix, A.Z. (2015). Genetic factors associated with longevity: a review of recent findings. Ageing Res Rev, 19, 1–7. https://doi.org/10.1016/j.arr.2014.10.005.

LXV. Smith, L. (1989). Histopathologic characteristics and ultrastructure of ageing skin. Cutis, 43, 414-24.

LXVI. Shimada, A., Keino, H., Satoh, M., Kishikawa, M., Seriu, N., Hosokawa, M. (2002). Age-related progressive neuronal DNA damage associated with cerebral degeneration in a mouse model of accelerated senescence. J Gerontol A Biol Sci Med Sci, 57, B415–B421. https://doi.org/10.1093/gerona/57.12.b415.

LXVII. Soenen, S., Rayner, C.K., Jones, K.L., Horowitz, M. (2016). The ageing gastrointestinal tract. Curr Opin Clin Nutr Metab Care, 19, 12-8. https://doi.org/10.1097/MCO.0000000000000238.

LXVIII. Sreedhar, A., Aguilera-Aguirre, L., Singh, K.K. (2020). Mitochondria in skin health, ageing, and disease. Cell Death Dis, 11, 444. https://doi.org/10.1038/s41419-020-2649-z.

LXIX. Sung, M.M.Y., Dyck, J.R.B. (2012). Age-related cardiovascular disease and the beneficial effects of calorie restriction. Heart Fail Rev, 17, 707–19. https://doi.org/10.1007/s10741-011-9293-8.

LXX. Tamarina, N.A., McMillan, W.D., Shively, V.P., Pearce, W.H. (1997). Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery, 122, 264–271. https://doi.org/10.1016/s0039-6060(97)90017-9.

LXXI. Tang, X., Li, P.H., Chen, H.Z. (2020). Cardiomyocyte Senescence and Cellular Communications Within Myocardial Microenvironments. Front Endocrinol (Lausanne), 11, 280. https://doi.org/10.3389/fendo.2020.00280.

LXXII. Tarnawski, A., Pai, R., Deng, X., Ahluwalia, A., Khomenko, T., Tanigawa, T., Akahoshi, T., Sandor, Z., Szabo, S. (2007). Ageing gastropathy-novel mechanisms: hypoxia, up-regulation of multifunctional phosphatase PTEN, and proapoptotic factors. Gastroenterol, 133, 1938-47. https://doi.org/10.1053/j.gastro.2007.08.037.

LXXIII. Unverferth, D.V., Baker, P.B., Arn, A.R., Magorien, R.D., Fetters, J., Leier, C.V. (1986). Ageing of the human myocardium: a histologic study based upon endomyocardial biopsy. Gerontology, 32, 241-51. https://doi.org/10.1159/000212798.

LXXIV. Venkataraman, K., Khurana, S., Tai, T.C. (2013). Oxidative stress in ageing—matters of the heart and mind. Int J Mol Sci, 14, 17897–925. https://doi.org/10.3390/ijms140917897.

LXXV. Vogiagis, D., Glare, E.M., Misajon, A., Brown, W., O’Brien, P.E. (2000). Cyclooxygenase-1 and an alternatively spliced mRNA in the rat stomach: effects of ageing and ulcers. Am J Physiol Gastrointest Liver Physiol, 278, G820–G827. https://doi.org/10.1152/ajpgi.2000.278.5.G820.

LXXVI. Wiggins, J.E., Goyal, M., Sanden, S.K., Wharram, B.L., Shedden, K.A., Misek, D.E., Kuick, R.D., Wiggins, R.C. (2005). Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the ageing rat: prevention by calorie restriction. J Am Soc Nephrol, 16, 2953–2966. https://doi.org/ 10.1681/ASN.2005050488.

LXXVII. Wiggins, J.E. (2012). Ageing in the glomerulus. J Gerontol A Biol Sci Med Sci, 67, 1358–1364. https://doi.org/10.1093/gerona/gls157.

LXXVIII. Wynne, H.A., Cope, L.H., Mutch, E., Rawlins, M.D., Woodhouse, K.W., James, O.F. (1989). The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology, 9, 297–301. https://doi.org/10.1002/hep.1840090222.

LXXIX. Zhang, W., Zheng, S.B., Zhuang, Y., Xiang, P., Xiao, L., Li, B., Ji, D.N., Xia, S.J., Yu, Z., Shi, D.Y. (2013). H+ /K+ ATPase expression in human parietal cells and gastric acid secretion in elderly individuals. J Dig Dis, 14, 366-72. https://doi.org/10.1111/1751-2980.12055.