High Doses of Anacardium Occidentale Nut Shell Extract Induce Oxidative Damage in Cardiac and Renal Organs of Wistar Rats

Main Article Content

Adeleke G.E
Ajayi M.T
Adegbola P.I
Berena G.A
Obasa A.A
Dare D.I
Ayobami T.E
Mark I.T

Abstract

Anacardium occidentale (Cashew) is a plant reported to show several biological activities. The aim of this study is to examine the effects of methanol extract of Anacardium occidentale nut shell on the antioxidant status and histological features in cardiac and renal tissues of rats. Shells were obtained from the nut, air-dried, pulverized, and subjected to Soxhlet extraction to obtain Anacardium occidentale nut shell extract (AONSE). Forty-five male Wistar rats were divided into nine groups (5 rats each), and given oral gavage of corn oil (Control), and 50, 100, 150, 200, 250, 300, 350 and 400 mg/kg of AONSE, every other day for twenty-eight days. After sacrifice, heart and kidney were removed and divided into two portions each; one portion was homogenized for biochemical assays, while the other was fixed in formalin for histopathology. Superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST) and Malondialdehyde (MDA) levels in the two organs were spectrophotometrically assayed. Histopathology of the organs was also done. The SOD and catalase were reduced in heart at high doses of AONSE relative to control. The AONSE has no significant effects on GPx, GST and MDA in the two organs, comparable to control. Photomicrographs of heart show, myocardial distortions and fibrosis, while glomerular fluid accumulation and hemorrhagic fibrosis were observed in kidney, at high doses, as against control and low doses of AONSE. This study shows that high doses of Anacardium occidentale nut shell extract could induce cytological derangements in heart and kidney of rats, possibly via oxidative mechanism.

Article Details

How to Cite
G.E, A., M.T, A. ., P.I, A., G.A, B. ., A.A, O. ., D.I, D. ., T.E, A. ., & I.T, M. (2022). High Doses of Anacardium Occidentale Nut Shell Extract Induce Oxidative Damage in Cardiac and Renal Organs of Wistar Rats. International Journal of Pharmaceutical and Bio Medical Science, 2(06), 118–126. https://doi.org/10.47191/ijpbms/v2-i6-02
Section
Articles

References

I. Nakasone HY, Paull RE (1998). Tropical Fruits. CAB International, Oxford, UK.

II. Trevisan MTS, B Pfundstein, R Haubner, G Würtele, B Spiegelhalder, H Bartsch, RW

Owen (2006). Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity.Food and chemical toxicology 44(2), 188-197.

III. Santos G, Silva E, Silva B, Sena K, Lima C. (2011) Influence of gamma radiation on the

antimicrobial activity of crude extracts of Anacardium occidentale L., Anacardiaceae, rich in tannins. Rev Bras Farmacogn. 21:444–9.

IV. Asogwa E.U., Anikwe J.C., Ndubuaku T.C.N., Okelana F.A., 2009. Distribution and

damage characteristics of an emerging insect pest of cashew, Plocaederusferrugineus L. (Coleoptera: Cerambycidae) in Nigeria: A preliminary report. Afr. J. Biotechnol. 8 (1):053-058.

V. Orwa C., Mutua A., Kindt R., Jamnadass R., Simons A., 2009. Agroforesttree Database: A tree reference and selection guide version 4.0.

VI. Hammed L.A., Lawal B.A., Kolapo K.A., 2011. Growth and nutrient uptake of cashew

(Anacardiumoccidentale L.) seedlings as affected by nutsize in the nursery. Afr. J. Agric. Res. 6 (17):3962-

VII. Agricultural Research Service – United States Department of Agriculture. (2015) “Full report (All Nutrients): 12087, Nuts, cashew nuts, database version SR 27”

VIII. Eça K.S., Machado M.T.C., Hubinger MD, Menegalli F.C. (2015). Development of

active films from pectin and fruit extracts: light protection, antioxidant capacity, and compounds stability. J Food Sci. 80:C2389-96.

IX. Silva L.M.R., Lima A.C.S., Maia A.G, Sousa P.H.M., Gonzaga M.L.C, Ramos A.M.,

(2017). Development of mixed nectar of cashew apple, mango and acerola. Int Food Res J. 24: 232-7.

X. McWilliam V., Koplin J., Lodge C., Tang M., Dharmage S., Allen K. (2015). “The

prevalence of tree nut allergy: a systemic review”. Current Allergy and Asthma Reports. 15 (9): 555.

XI. Abreu VKG, Pereira ALF, Freitas ERD, Trevisan MTS, Costa JMCD (2014). Effect of

anacardic acid on oxidative and color stability of spray dried egg yolk. LWT Food Sci. Technol. 55:466-471.

XII. Maia JGS, Andrade EHA, Zoghbi MDGB (2000). Volatile Constituents of the Leaves,

Fruits and Flowers of Cashew

(Anacardiumoccidentale L.). J. Food Compost. Anal. 13:227-232.

XIII. Ayepola O. and Ishola R (2009). Evaluation of antimicrobial activity of Anacardium occidentale (Linn.). Adv. Med. Dental Sci 3: 1-3.

XIV. Chaves MH, Citó A, Lopes JAD, Costa DAD, Oliveira CAAD, Costa AF, BritoJúnior

FEM (2010). Fenóistotais, atividadeantioxidante e constituintesquímicos de extratos de Anacardiumoccidentale L., Anacardiaceae. Rev. Bras. Farmacogn. 20:106-112.

XV. Doss V.A, Thangavel K.P (2011). Antioxidant and antimicrobial activity using different

extracts of Anacardiumoccidentale L. Int. J. Appl. Biol. Pharm. Technol. 2:436-443.

XVI. Garkal D.J. and Bhande R.S. (2021). Review on extraction and isolation of cashew nut

shell liquid. International Journal of Innovations in Engineering Research and Technology. 1(1): 1–8.

XVII. Buxton T., Takahashi S., Niwata I., Owusu E.O., Kim C-S., 2017. Isolation and

characterization of the insecticidal compounds in Anacardium occidentale (Cashew nut) liquid against the rice weevil, Sitophilusoryzae L. (Coleoptera: Curculionidae). Journal of Entomology and Zoology studies. 5 (2):1241 -1246.

XVIII. Melo-Cavalcante A.A, Dantas S.M, Leite Ade S., Matos L.A, Sousa J.M, Picada J.N, Da

Silva J. (2011). In-vivo antigenotoxic and anticlastogenic effects of fresh and processed cashew (Anacardiumoccidentale) apple juices. J. Med. Food 14:792-798.

XIX. Salehi B., Gültekin-Özgüven M.,, Kirkin C.,, Özçelik B, Morais-Braga M.F.B, Carneiro

J.N.P., Bezerra C.F., da Silva T.G. et al. (2020). Antioxidant, Antimicrobial, and Anticancer Effects of AnacardiumPlants: An Ethno-pharmacological Perspective. Frontiers in Endocrinology, 11 (295): 1-16.

XX. Jebapritha S.D.S and Karpagam S. (2017). Phytochemical content content and

antimicrobial activity of cashew nut shell oil. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS). 2017; 12 (4): 61-64.

XXI. De Carvalho G.H.F., De Andrade M.A., De Araujo C.N., Santos M.L., De Castro N.A.,

Chameau S., Monnerat R., Jaime Martins de Santana J.M., Bastos I.M.D. (2019). Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environmental Science and Pollution Research. 26(6):5514-5523.

XXII. Adeleke G.E., Adedosu1 O.T.., Olayioye A., Olaniyi A.A., Aderoju V.B., Akintaro O.O.

(2021). In-vitro Pesticidal effects of Water hyacinth leaf and Cashew nut shell extracts against Acanthoscelides obtectus and Zonocerus variegatus. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 15, (Issue 5 Ser. II): 36-48.

XXIII. Harlita SNHN., Sagi M., Astuti P. 92016). Acute toxicity of cashew nut shell extract

(Anacardium occidentale L.) in albino rat (Rattus norvegicus Berkenhout 1769). Pak. J. Biol. Sci. 19(2); 89-94.

XXIV. De Souza, M.Q.; Teotônio, I.M.S.N.; de Almeida, F.C.; Heyn, G.S.; Alves, P.S.;

Romeiro, L.A.S.; Pratesi, R.; de Medeiros Nóbrega,Y.K.; Pratesi, C.B. (2018). Molecular evaluation of anti-inflammatory activity of phenolic lipid extracted from cashew nut shell liquid (CNSL). BMC Complement. Altern. Med. 18, 181.

XXV. De Andrade R. G., Souza de Oliveira A., Bartolini M., Naldi M., Liparulo I., Bergamini C., Uliassi E., Wu L., Fraser P.E., Abreu M. et al. (2021). Discovery of sustainable drugs for Alzheimer’s disease: Cardanol-derived cholinesterase inhibitors with antioxidant and anti-amyloid properties. RSC Med. Chem. 12:1154–1163.

XXVI. Lowry OH, Rosbrough NJ, Farr AL., et al. (1951). Protein measurement with the Folin- phenol reagent. J. Biol. Chem. 193: 265-275.

XXVII. Misra HP and Fridovch J. (1975). The role of superoxide anion in the autoxidation of

epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247: 3170-3175.

XXVIII. Aebi H. (1984). Catalase in vitro. In: Packer L. Editor. Methods in Enzymology. Orlando FL: Academic Press. Pp. 121-126.

XXIX. Paglia D.E., Valentine W.N. (1967).Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab Clin. Med. 70: 158-169.

XXX. Habig W, Pabst M, Jakoby W. (1974). Glutathione S-transferase. The first enzymatic step in mercapturic acid formation.J Biol Chem. 249: 7130–7139.

XXXI. Ohkawa H, Ohishi N, Yagi K. (1979). Assay for lipid peroxides in animal tissues by Thiobarbituric acid reaction. Anal Biochem. 95:351-358.

XXXII. Wadley AJ, Veldhuijzen van Zanten JJ, Aldred S. (2013). The interactions of oxidative

stress and inflammation with vascular dysfunction in ageing: the vascular health triad. Age (Dordr). 35:705–18.

XXXIII. Phaniendra D.B.J., Periyasamy L. (2015). Freeradicals: properties, sources, targets, and their implicationin various diseases. Ind. J. of Clin. Biochem. 30 (1): 11-26.

XXXIV. Bansal A., Simon M.C., 2018. Glutathione metabolism in cancer progression and

treatment resistance. J. Cell Biol. 217:2291- 2298.

XXXV. Mittal M., Siddiqui MR., Tran K., Reddy SP., Malik AB. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 20:1126–67.

XXXVI. Oncu M., Gultekin F., Karaoz E., Altuntas T., Delibas N. (2002), Klorprifos Etil

tarafindan olusturulan oksidatif hasarin sucan karacigerine etkileri. Turkiye Klinikleri. Journal of Medical Sciences. 22(1): 50-55.

XXXVII. Sukprasansap M., Chanvorachote P., Tencomnao T., 2017. Clestcalyxnervosum var.

paniala berry fruit protects neuroxicity against endoplasmic reticulum stress-induced apoptosis. Food Chem. Toxicol. 103: 279-288.

XXXVIII. Fulda S., Gorman A.M., Hori O.. Samali A. (2010). “Cellular stress responses: cell

survival and cell death,” International Journal of Cell Biology, vol. 2010, Article ID 214074, 23 pages, 2010.

XXXIX. Gino A. Kurian,1 Rashmi Rajagopal,1 Srinivasan Vedantham,1 andMohanraj Rajesh

(2016). The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity. Volume 2016, Article ID 1656450: 1-14

XL. Okereke G., Okezie E., Ude V., Ekweogu CN., Ikpeazu V.O., Ugbogu E.A. (2020).

Physicochemical characterristics, acute and sub-acute toxicity of Cashew nut shell oil in Wistar rats. Scientific African. 8: e00391.

XLI. Adeleke G.E., Adedosu O.T., Adeagbo D.P., Oyebamiji A.J., Adegboyega T.E., Babalola

K.D., Adegbola P.I., Gbolagade A.M. (2022). Toxicological Profile of Anacardium occidentale Nut Shell Extract on Hematologic and Antioxidant Parameters in Brain and Testicular Tissues of Wistar Rats. Int. J. of Sci. and Res. (IJSR). 11 (3): 1533-1540.

XLII. Margis R., Dunand C., Teixeira F.K., Margis-Pinheiro M., 2008. Glutathione peroxidase family - an evolutionary overview. FEBS J. 275: 3959-3970.

XLIII. Toussaint O., Houbion A., Remacle J. (1999). Relationship between the critical level of Oxidative stresses and the glutathione peroxidase activity. Toxicol. 81: 89-101.

XLIV. Arcdenaz N., Yang XP., Cifuentes ME., Haurani MJ., Jackson KW., Liao TD., Carretero

OA., Pagano PJ. (2010). Lack of Glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in Angiotensin II hypertension. Hypertension, 55: 116-123.

XLV. Ferdinandy P., Danial H., Ambrus I., Rother RA., Schulz R. (2000). Peroxinitrite is a

major contributor to cytokine-induced myocardial contractile failure. Circ. Res. 87: 241-247.

XLVI. Loh SH., Tsai CS., Tsai Y., Chen WH., Hong GJ., Wei j., Cheng TH., Lin CI. (2002).

Hydrgen peroxide-induced acidosis and electrochemical inhibition in the disease human ventricular myocardium. Eur. J. Pharmacol. 443: 169-177.

XLVII. Brenner DA., Jain M., Pimentel DR., Wang B., Cnnors L.H., Skinner M., Apstein CS.,

Liao R. (2004). Human amyloidogenic light chains directly impair cardiomyocytes function through an increase in cellular oxidant stress. Circ. Res. 94: 1008-1010.

XLVIII. Seddon M., Looi Y.H., Shah A.M. (2007). Oxidative stess and redox signaling in cardiac hypertrophy and heart failure. Heart. 93: 903-907.

XLIX. Baumer AT., Flesch M., Wang X., Shen Q., Feuerstein G.Z. Bohm M. (2000).

Antioxidative enzymes in human hearts with idiopathic dilated cardiomyopathy. J. Mol. Cell Cardiol. 32: 121-130.

L. Miranda-Diaz A.G., Pazarin-Villasenor L., Yanowsky-Escatell F.G., Andrade-Sierra J.

(2016). Oxidative stress in diabetic nephropathy with early chronic kidney disease. Journal Diabetes Research.2016:7047238.

LI. Haung U., Poole E.M., Xiao L., Curtin K., Duggan D., Hsu .L, et al. (2012). Glutathione

peroxidase tagSNPs: associations with rectal cancer but not with colon cancer. Genes Chromosomes Cancer. 51:598-605.

LII. Naiki T., Naiki-Ito A., Iida K., EtaniT., Kato H., Suzuki S., et al. (2018). GPX2 promotes

development of bladder cancer with squamous cell differentiation through the control of apoptosis. Oncotarget. 9:15847-15859.

LIII. Bangming G., Wenjuan L., Shusheng W. (2021). The clinical significance of GPx 2 in glioblastomamultiforme. Translational Neurosci. 12 (1): 032-039.

LIV. Sheehan D., Meade G., Foley V.M., Dowd C.A., 2001. Review article, Structure,

function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360: 1-16.

LV. Pahwa S., Sharma R., Sigh B. (2018). Role of glutathione-S-transferase on coronary

Artery disease patients with and without type 2 diabetes mellitus. Journal of Clinical and diagnostic Res. 12(8): ZZ01.

LVI. Adeleke G.E., Adaramoye O.A., 2016. Modulatory role of Betulinic acid in N-Nitrosodimethylamine- induced hepato-renal toxicity in male rats. Hum and Expert Toxicol. 1-10.

LVII. Ortega A.M.M. and Campos M.R.S., 2019. Bioactive compounds: Health benefits and

potential applications. Chapter 5- Medicinal plants and their bioactive metabolites in cancer prevention and treatment. Pp 85-109.

LVIII. Ismail A.F., Moawed F.S., Mohamed M.A., (2015). Protective mechanism of grape seed

oil on carbon tetrachloride-induced brain damage in γ -irradiated rats, J. Photochem. Photobiol. B: Biol. 153; 317–332.

LIX. Gyurászová M., Gurecká R., Bábíˇcková J., Tóthová L., (2020). Oxidative stress in the

Pathophysiology of kidney disease: Implications for non-invasive monitoring and biomarkers. Oxid. Med. Cell Longev. 2020, 5478708.

LX. Kurian G.A. and Paddikkala J. (2009). “Administration of aqueous extract of Desmodium

gangeticum (L) root protects rat heart against ischemic reperfusion injury induced oxidative stress, ”Indian Journal of Expt. Biol. 47 (2): 129–135.

LXI. Kurian G.A. and Paddikkala J. (2010). “N-acetylcysteine and magnesium improve

biochemical abnormalities associated with myocardial ischaemic reperfusion in South Indian patients undergoing coronary artery bypass grafting: a comparative analysis,” Singapore Medical Journal. 51 (5):381–388.

LXII. Giordano F.J. (2005). “Oxygen, oxidative stress, hypoxia, and heart failure.” The Journal of Clinical Investigation. 115 (3): 500– 508.