The Use of Mus Musculus Model to Evaluate Pharmacological Mechanisms of Curcumin in Alzheimer's disease

Main Article Content

Jane Sabini
Adelina Simamora

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is the primary cause of dementia in late adulthood. With the increasing global population and life expectancy, the incidence of AD is also rapidly rising. Currently, available drugs for AD cannot prevent disease progression but can only treat its symptoms, accompanied by severe side effects and high costs. Therefore, curcumin is expected to be an alternative treatment for AD. The aim of this study was to investigate the pharmacological pathway of curcumin’s mechanisms of action on AD using mice as animal models. A search was conducted on four databases using the keywords "curcumin", "Mus musculus", and "Alzheimer's disease". Curcumin possesses multiple mechanisms of action, namely: (1) as an antioxidant agent by increasing antioxidant enzyme activity and decreasing the number of reactive oxygen species (ROS); (2) an anti-inflammatory agent characterized by a decrease in neuroinflammatory cytokines and inhibits endoplasmic reticulum stress; (3) inhibition of amyloid beta and tau hyperphosphorylation, resulting in a decrease in Aβ deposit and tau expression, as well as increased expression of beta-site APP cleaving enzyme-1 (BACE-1) and amyloid beta degrading enzyme; (4) Reducing the activated microglial cell population and decreasing ionized calcium binding adaptor-1 molecule (Iba-1) and glial fibrillary acidic protein (GFAP); (5) regulating important molecules in insulin signaling pathways and glucose metabolism; (6) Inhibition of activity of acetylcholinesterase (AChE) enzyme..

Article Details

How to Cite
Sabini, J., & Simamora, A. . (2025). The Use of Mus Musculus Model to Evaluate Pharmacological Mechanisms of Curcumin in Alzheimer’s disease. International Journal of Pharmaceutical and Bio Medical Science, 5(2), 96–106. https://doi.org/10.47191/ijpbms/v5-i2-02
Section
Articles

References

I. Claeysen S, Giannoni P, and Ismeurt C. 2020. The 5× FAD mouse model of Alzheimer's disease. The neuroscience of dementia. 1(Chapter 13):207-221.

II. Drummond E, and Wisniewski T. 2017. Alzheimer’s disease: experimental models and reality. Acta Neuropathologica. 133(2):155-175. doi:10.1007/s00401-016-1662-x.

III. Elsayed ASI, Hegazi MA, Mostafa H, and Hegazi MM. 2016. The protective role of curcumin against oxidative stress caused by gasoline. Int J Appl Biol Pharm Technol. 7:56-66.

IV. Fan S, Zheng Y, Liu X, et al. 2018. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv. 25(1):1091-1102. doi:10.1080/10717544.2018.1461955.

V. Feng H-l, Dang H-z, Fan H, et al. 2016. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer’s disease transgenic mice. Int J Immunopathol Pharmacol. 29(4):734-741. doi:10.1177/0394632016659494.

VI. Fidelis EM, Savall ASP, da Luz Abreu E, et al. 2019. Curcumin-Loaded Nanocapsules Reverses the Depressant-Like Behavior and Oxidative Stress Induced by β-Amyloid in Mice. Neuroscience. 423:122-130. doi:https://doi.org/10.1016/j.neuroscience.2019.09.032.

VII. Gerenu G, Liu K, Chojnacki JE, et al. 2015. Curcumin/Melatonin Hybrid 5-(4-Hydroxy-phenyl)-3-oxo-pentanoic Acid [2-(5-Methoxy-1H-indol-3-yl)-ethyl]-amide Ameliorates AD-Like Pathology in the APP/PS1 Mouse Model. ACS Chemical Neuroscience. 6(8):1393-1399. doi:10.1021/acschemneuro.5b00082.

VIII. Giacomeli R, Izoton JC, dos Santos RB, et al. 2019. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Res. 1721:146325. doi:https://doi.org/10.1016/j.brainres.2019.146325.

IX. Gong J, and Sun D. 2022. Study on the mechanism of curcumin to reduce the inflammatory response of temporal lobe in Alzheimer's disease by regulating miR-146a. Minerva medica. 113(1):109-118. doi:10.23736/s0026-4806.20.06463-0.

X. Gutierrez MEZ, Savall ASP, da Luz Abreu E, et al. 2021. Co-nanoencapsulated meloxicam and curcumin improves cognitive impairment induced by amyloid-beta through modulation of cyclooxygenase-2 in mice. Neural Regeneration Research. 16(4):783-789. doi:10.4103/1673-5374.295339.

XI. Han Y, Chen R, Lin Q, et al. 2021. Curcumin improves memory deficits by inhibiting HMGB1-RAGE/TLR4-NF-κB signalling pathway in APPswe/PS1dE9 transgenic mice hippocampus. J Cell Mol Med. 25(18):8947-8956. doi:https://doi.org/10.1111/jcmm.16855.

XII. Huang N, Lu S, Liu XG, et al. 2017. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer's disease mice. Oncotarget. 8(46):81001-81013. doi:10.18632/oncotarget.20944.

XIII. Huo X, Zhang Y, Jin X, et al. 2019. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease. J Photochem Photobiol B: Biol. 190:98-102. doi:https://doi.org/10.1016/j.jphotobiol.2018.11.008.

XIV. Hussain H, Ahmad S, Shah SWA, et al. 2022. Attenuation of Scopolamine-Induced Amnesia via Cholinergic Modulation in Mice by Synthetic Curcumin Analogs. Molecules. 27(8):2468.

XV. Khalil MN, Choucry MA, El Senousy AS, et al. 2019. Ambrosin, a potent NF-κβ inhibitor, ameliorates lipopolysaccharide induced memory impairment, comparison to curcumin. PLoS One. 14(7):e0219378.

XVI. Kou J, Wang M, Shi J, et al. 2021. Curcumin Reduces Cognitive Deficits by Inhibiting Neuroinflammation through the Endoplasmic Reticulum Stress Pathway in Apolipoprotein E4 Transgenic Mice. ACS Omega. 6(10):6654-6662. doi:10.1021/acsomega.0c04810

XVII. Kumar A, Sidhu J, Goyal A, et al. (2023). Alzheimer Disease (Nursing): StatPearls Publishing, Treasure Island (FL).

XVIII. Lee J, Jin C, Cho S-Y, et al. 2020. Herbal medicine treatment for Alzheimer disease: A protocol for a systematic review and meta-analysis. Medicine. 99(33):e21745. doi:10.1097/md.0000000000021745.

XIX. Lin L, Li C, Zhang D, et al. 2020. Synergic Effects of Berberine and Curcumin on Improving Cognitive Function in an Alzheimer’s Disease Mouse Model. Neurochem Res. 45(5):1130-1141. doi:10.1007/s11064-020-02992-6.

XX. Lu Y, Guo Z, Zhang Y, et al. 2019. Microenvironment Remodeling Micelles for Alzheimer's Disease Therapy by Early Modulation of Activated Microglia. Advanced Science. 6(4):1801586. doi:https://doi.org/10.1002/advs.201801586.

XXI. Mckean NE, Handley RR, and Snell RG. 2021. A Review of the Current Mammalian Models of Alzheimer’s Disease and Challenges That Need to Be Overcome. Int J Mol Sci. 22(23):13168.

XXII. Mishra S, and Palanivelu K. 2008. The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Annals of Indian Academy of Neurology. 11(1):13-19. doi:10.4103/0972-2327.40220.

XXIII. Mukhopadhyay CD, Ruidas B, and Chaudhury SS. 2017. Role of curcumin in treatment of Alzheimer disease. Int J Neurorehabilitation. 4(3):274.

XXIV. Okuda M, Fujita Y, and Sugimoto H. 2019. The Additive Effects of Low Dose Intake of Ferulic Acid, Phosphatidylserine and Curcumin, Not Alone, Improve Cognitive Function in APPswe/PS1dE9 Transgenic Mice. Biological and Pharmaceutical Bulletin. 42(10):1694-1706. doi:10.1248/bpb.b19-00332.

XXV. Schachter AS, and Davis KL. 2000. Alzheimer's disease. Dialogues in Clinical Neuroscience. 2(2):91-100. doi:10.31887/DCNS.2000.2.2/asschachter

XXVI. Sharman MJ, Gyengesi E, Liang H, et al. 2019. Assessment of diets containing curcumin, epigallocatechin-3-gallate, docosahexaenoic acid and α-lipoic acid on amyloid load and inflammation in a male transgenic mouse model of Alzheimer's disease: Are combinations more effective? Neurobiology of Disease. 124:505-519. doi:https://doi.org/10.1016/j.nbd.2018.11.026.

XXVII. Shi L-Y, Zhang L, Li H, et al. 2018. Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmacological Reports. 70(5):1040-1046. doi:10.1016/j.pharep.2018.05.006.

XXVIII. Song J-X, Malampati S, Zeng Y, et al. 2020. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer's disease models. Aging Cell. 19(2):e13069. doi:https://doi.org/10.1111/acel.13069.

XXIX. Su I-J, Chang H-Y, Wang H-C, and Tsai K-J. 2020. A Curcumin Analog Exhibits Multiple Biologic Effects on the Pathogenesis of Alzheimer’s Disease and Improves Behavior, Inflammation, and β-Amyloid Accumulation in a Mouse Model. Int J Mol Sci. 21(15):5459.

XXX. Su I-J, Hsu C-Y, Shen S, et al. 2022. The Beneficial Effects of Combining Anti-Aβ Antibody NP106 and Curcumin Analog TML-6 on the Treatment of Alzheimer’s Disease in APP/PS1 Mice. Int J Mol Sci. 23(1):556.

XXXI. Sun J, Zhang X, Wang C, et al. 2017. Curcumin Decreases Hyperphosphorylation of Tau by Down-Regulating Caveolin-1/GSK-3β in N2a/APP695swe Cells and APP/PS1 Double Transgenic Alzheimer’s Disease Mice. The American Journal of Chinese Medicine. 45(08):1667-1682. doi:10.1142/s0192415x17500902.

XXXII. Sundaram JR, Poore CP, Sulaimee NHB, et al. 2017. Curcumin Ameliorates Neuroinflammation, Neurodegeneration, and Memory Deficits in p25 Transgenic Mouse Model that Bears Hallmarks of Alzheimer's Disease. J Alzheimers Dis. 60(4):1429-1442. doi:10.3233/jad-170093.

XXXIII. Teter B, Morihara T, Lim GP, et al. 2019. Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiology of Disease. 127:432-448. doi:https://doi.org/10.1016/j.nbd.2019.02.015.

XXXIV. Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, and Vingerhoets C. 2019. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res. 1725:146476. doi:https://doi.org/10.1016/j.brainres.2019.146476.

XXXV. Wang C, Zhang X, Teng Z, et al. 2014. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol. 740:312-320. doi:https://doi.org/10.1016/j.ejphar.2014.06.051.

XXXVI. Wang P, Su C, Feng H, et al. 2017. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int J Immunopathol Pharmacol. 30(1):25-43. doi:10.1177/0394632016688025.

XXXVII. Xiao Y, Dai Y, Li L, et al. 2021. Tetrahydrocurcumin ameliorates Alzheimer's pathological phenotypes by inhibition of microglial cell cycle arrest and apoptosis via Ras/ERK signaling. Biomedicine & Pharmacotherapy. 139:111651. doi:https://doi.org/10.1016/j.biopha.2021.111651.

XXXVIII. Yanagisawa D, Ibrahim NF, Taguchi H, et al. 2015. Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiol Aging. 36(1):201-210. doi:https://doi.org/10.1016/j.neurobiolaging.2014.07.041.

XXXIX. Zheng K, Dai X, Xiao Na, et al. 2017. Curcumin Ameliorates Memory Decline via Inhibiting BACE1 Expression and β-Amyloid Pathology in 5×FAD Transgenic Mice. Mol Neurobiol. 54(3):1967-1977. doi:10.1007/s12035-016-9802-9