Toxicity and Antibacterial Activity of ascidian Eudistoma cf. purpuropuctatum

Main Article Content

Robert A. Bara
Marsitasari Tandiongan
Calvyn F. A. Sondak
Iddo Posangi
Esther D. Angkouw
Fitje Losung
Ping A. Angmalisang
Hariyani Sambali
Jimmy Posangi

Abstract

Ascidians are invertebrates found in coral reef ecosystems that produce bioactive compounds for pharmacological purposes where these animals can associate with microbes and have a great deal of molecular potential due to their bioactive secondary metabolites that they produce.


Using the ascidian extract Eudistoma cf. purpuropunctatum collected from Manado Bay, this study aims to determine its toxicity and antibacterial activity. Analyses showed the LC50 for ascidian Eudistoma cf. purpuropunctatum is 7.31 ppm and it is classified as extremely toxic. Further bioactivity testing of this ascidian shows that it has very strong activity against Gram-negative strain Escherichia coli DSM498 and Gram-positive strain Bacillus megaterium DSM32T. In addition, the related species has a Minimum Inhibitory Concentration (MIC) value against B. megaterium at a concentration of 1000 ppm, whereas the Minimum Bactericidal Concentration (MBC) was greater than 1000 ppm.

Article Details

How to Cite
Bara, R. A. ., Marsitasari Tandiongan, Calvyn F. A. Sondak, Iddo Posangi, Esther D. Angkouw, Fitje Losung, Ping A. Angmalisang, Hariyani Sambali, & Jimmy Posangi. (2022). Toxicity and Antibacterial Activity of ascidian Eudistoma cf. purpuropuctatum. International Journal of Pharmaceutical and Bio Medical Science, 2(4), 57–66. https://doi.org/10.47191/ijpbms/v2-i4-03
Section
Articles

References

I. Jiang, C.-S., et al., Disulfide- and Multisulfide-Containing Metabolites from Marine Organisms. Chemical Reviews, 2012. 112(4): p. 2179-2207.

II. Kornprobst, J.M., Encyclopedia of marine natural products. 2010, Weinheim: Wiley-Blackwell.

III. Newman, D.J. and G.M. Cragg, Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. Journal of Natural Products, 2012. 75(3): p. 311-335.

IV. Fattorusso, E., W.H. Gerwick, and O. Taglialatela-Scafati, Handbook of marine natural products. 2012.

V. Bara, R.A., et al., Analisis Senyawa Antibiotik Dari Jamur Simbion Yang Terdapat Dalam Ascidians Didemnum Molle Di Sekitar Perairan Bunaken-Sulawesi Utara. Jurnal LPPM Bidang Sains dan Teknologi, 2015. 2(2): p. 1-8.

VI. Mangindaan, R.E.P. and R.Y. Taroreh, Pengujian Aktivitas Larvasida dari Ekstrak Ascidia Lissoclinum pattela Terhadap Larva Nyamuk Aedes aegypti. Jurnal Pesisir dan Laut Tropis, 2013. 3(1): p. 13-17.

VII. Diyabalanage, T., et al., Flabelliferins A and B, sesterterpenoids from the South Pacific sponge Carteriospongia flabellifera. J Nat Prod, 2012. 75(8): p. 1490-4.

VIII. Malintoi, A., et al., KOMUNITAS ASCIDIA DI PESISIR MALALAYANG DUA, TELUK MANADO, SULAWESI UTARA. Jurnal Pesisir dan Laut Tropis, 2020. 8(1): p. 39-46.

IX. Bara, R.A., et al., A NEW NATURAL PRODUCT DIKETOPIPERAZINE, ANTIBIOTICALLY ACTIVE COMPOUND FROM SYMBIOTIC FUNGUS Purpureocillium lilacinum ISOLATED FROM MANGROVE Sonneratia alba. Rasayan Journal of Chemistry, 2020. 13: p. 2595-2602.

X. Datula’bi, J.S., et al., Aktivitas sitotoksik ekstrak karang lunak Xenia sp., dari Teluk Manado, Provinsi Sulawesi Utara. Jurnal Pesisir dan Laut Tropis, 2021. 9(3): p. 66-73.

XI. Nakamura, Y., et al., Siladenoserinols A-L: new sulfonated serinol derivatives from a tunicate as inhibitors of p53-Hdm2 interaction. Org Lett, 2013. 15(2): p. 322-5.

XII. Palungan, I., et al., Aktivitas Antibakteri Ekstrak Spons Stylissa carteri dari Teluk Manado, Sulawesi Utara. . Journal Ilmiah Platax (manuscript is under reviewed), 2021.

XIII. Sumilat, D.A., et al., A new biphenyl ether derivative produced by Indonesian ascidian-derived Penicillium albobiverticillium. J Nat Med, 2017. 71(4): p. 776-779.

XIV. Hertzer, C., et al., Antibacterial scalarane from Doriprismatica stellata nudibranchs (Gastropoda, Nudibranchia), egg ribbons, and their dietary sponge Spongia cf. agaricina (Demospongiae, Dictyoceratida). Beilstein J Org Chem, 2020. 16: p. 1596-1605.

XV. Tandiongan, M., et al., Toksisitas ekstrak karang lunak Cespitularia sp., dari Teluk Manado Provinsi Sulawesi Utara.Vol. 9. (3). Hal. 26-33. Jurnal Pesisir dan Laut Tropis. , 2021. 9(3): p. 26-33.

XVI. Tatsuta, T., et al., Lissoclibadin 1, a Polysulfur Aromatic Alkaloid from the Indonesian Ascidian Lissoclinum cf. badium, Induces Caspase-Dependent Apoptosis in Human Colon Cancer Cells and Suppresses Tumor Growth in Nude Mice. Journal of Natural Products, 2017. 80(2): p. 499-502.

XVII. Ukar, M., et al., AKTIVITAS SENYAWA ANTIBAKTERI DAN ANTI-UV DARI Phyllidia varicosa (Cuvier, 1804) DAN BAKTERI SIMBIONNYA (NUDIBRANCHIA GASTROPODA) DARI PERAIRAN TANJUNG MANDOLANG, MINAHASA. Jurnal Pesisir dan Laut Tropis, 2020. 8(2): p. 27-39.

XVIII. Urda, C., et al., Bistratamides M and N, Oxazole-Thiazole Containing Cyclic Hexapeptides Isolated from Lissoclinum bistratum Interaction of Zinc (II) with Bistratamide K. Mar Drugs, 2017. 15(7).

XIX. Dajoh, T., et al., UJI AKTIVITAS ANTIBAKTERI DAN ANTI-UV Phyllidiella nigra DAN BAKTERI SIMBIOTIKNYA DARI PERAIRAN TANJUNG MANDOLANG (ANTIBACTERIAL AND ANTI-UV ASSAYS OF Phyllidiellanigra AND ITS SYMBIOTIC BACTERIA from MANDOLANG PENINSULA). Jurnal Pesisir dan Laut Tropis, 2020. 8(2): p. 61-71.

XX. Fisch, K.M., et al., The Potential of Indonesian Heterobranchs Found around Bunaken Island for the Production of Bioactive Compounds. Mar Drugs, 2017. 15(12).

XXI. Böhringer, N., et al., Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia. Front Microbiol, 2017. 8: p. 1092.

XXII. Colin, P.L. and C. Arneson, Tropical Pacific invertebrates : a field guide to the marine invertebrates occurring on tropical Pacific coral reefs, seagrass beds, and mangroves. 1995, Beverly Hills, Calif.: Coral Reef Press.

XXIII. Atta-ur-Rahman, M.I. Choudhary, and W.J. Thomsen, Bioassay Techniques for Drug Development. Vol. 1. 2001, London: CRC Press.

XXIV. Cahyadi, R., Uji Toksisitas Akut Ekstrak Etanol Buah Pare (Momordica charantia L.) Terhadap Larva Artemia salina Leach Dengan Metode Brine Shrimp Lethality Test (BST). Undergraduate thesis, Medical faculty., in Fakultas Kedokteran Undip. 2009, Universitas Diponegoro: Semarang.

XXV. Vincent, K. Probit Analysis unknown. 8.

XXVI. Migliato, K., et al., Antimicrobial and Cytotoxic Activity of Fruit Extract from Syzygium cumini (L.) Skeels. Latin American Journal of Pharmacy, 2010. 29.

XXVII. Meyer, B.N., et al., Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med, 1982. 45(5): p. 31-4.

XXVIII. Meena, D., et al., Prospects and perspectives of virtual in-vitro toxicity studies on herbal extracts of Terminalia arjuna with enhanced stratagem in Artemia salina model: a panacea to explicit the credence of solvent system in brine shrimp lethality bioassay. Emirates Journal of Food and Agriculture, 2020: p. 25.

XXIX. Tanamatayarat, P., Antityrosinase, antioxidative activities, and brine shrimp lethality of ethanolic extracts from Protium serratum (Wall. ex Colebr.) Engl. Asian Pacific Journal of Tropical Biomedicine, 2016. 6(12): p. 1050-1055.

XXX. Ghisalberti, E., Detection and Isolation of Bioactive Natural Products. 2007. 11-76.

XXXI. Rajesh, R.P. and M. Annappan, Anticancer Effects of Brominated Indole Alkaloid Eudistomin H from Marine Ascidian Eudistoma viride Against Cervical Cancer Cells (HeLa). Anticancer Research, 2015. 35(1): p. 283.

XXXII. Jimenez, P.C., et al., Structure Elucidation and Anticancer Activity of 7-Oxostaurosporine Derivatives from the Brazilian Endemic Tunicate Eudistoma vannamei. 2012. 10(5): p. 1092-1102.

XXXIII. Watters, D.J., Ascidian Toxins with Potential for Drug Development. Marine drugs, 2018. 16(5): p. 162.

XXXIV. Qurishi, Y., et al., Anticancer activity in HeLa and MCF-7 cells via apoptopic cell death by a sterol molecule Cholesta-4,6-dien-3-ol (EK-7), from the marine ascidian Eudistoma kaverium. Journal of King Saud University - Science, 2021. 33(4): p. 101418.

XXXV. D'Alessio, J.M. and J.C. Bagshaw, DNA-dependent RNA polymerases from Artemia salina. IV. appearance of nuclear RNA polymerase activity during pre-emergence development of encysted embryos. Differentiation, 1977. 8(1): p. 53-6.

XXXVI. Wagner, S.D., et al., RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA. Embo j, 2013. 32(6): p. 781-90.

XXXVII. Gallo, L.C., et al., Time-dependent increases in ouabain-sensitive Na+, K+ -ATPase activity in aortas from diabetic rats: The role of prostanoids and protein kinase C. Life Sci, 2010. 87(9-10): p. 302-8.

XXXVIII. Lee, K.J. and S.A. Watts, Specific Activity of Na⁺ K⁺ ATPase Is Not Altered in Response to Changing Salinities during Early Development of the Brine Shrimp Artemia franciscana. Physiological Zoology, 1994. 67(4): p. 910-924.

XXXIX. Skou, J.C. and M. Esmann, The Na,K-ATPase. J Bioenerg Biomembr, 1992. 24(3): p. 249-61.

XL. Davis, W.W. and T.R. Stout, Disc plate method of microbiological antibiotic assay. I. Factors influencing variability and error. Applied microbiology, 1971. 22(4): p. 659-665.

XLI. Macpal, Y., et al., Aktivitas Antibakteri Dan Anti UV Beberapa Ascidian Dari Perairan Pangalingsang Bunaken. Jurnal Pesisir dan Laut Tropis, 2019. 7(3): p. 273-285.

XLII. Opa, S.L., et al., Uji Aktivitas Antibakteri Fraksi N-Heksana, Metanol Dan Air Dari Ascidian Lissoclinum sp. Jurnal Pesisir dan Laut Tropis, 2018. 1(1): p. 69- 80.

XLIII. Wang, W., et al., Beta-carboline alkaloids from a Korean tunicate Eudistoma sp. J Nat Prod, 2008. 71(2): p. 163-6.

XLIV. Schupp, P., et al., Eudistomins W and X, Two New β-Carbolines from the Micronesian Tunicate Eudistoma sp. Journal of Natural Products, 2003. 66(2): p. 272-275.

XLV. Posangi, J. and R. Bara, Analisis aktivitas dari jamur endofit yang terdapat dalam tumbuhan bakau Avicennia marina di Tasik Ria Minahasa. Jurnal Pesisir dan Laut Tropis 2014. 1(1): p. 30-38.

XLVI. Poole, K., Efflux pumps as antimicrobial resistance mechanisms. Ann Med, 2007. 39(3): p. 162-76.