Antibiotic Susceptibility Profile of Gram-Negative Bacteria Isolated From Pond Catfish in Ketu Adie-Owe, Ado-Odo Local Government Area of Ogun State, Nigeria

Main Article Content

Lateef, E. O.
Banjo, T. T.
Dunkwu T. C.
Okodogbe, H. O.
Olabode, O. M.

Abstract

The increasing number of fish ponds in Nigeria is driven by the demand for fish and fishery products. Catfish, specifically Clarias gariepinus, is popular for cultivation due to its economic significance. However, bacterial infections pose a threat to the health of catfish in these ponds, resulting in the need for antibiotic usage. This study is aimed to assess the antibiotic susceptibility pattern of Gram-negative bacteria isolated from pond catfish. This study involved isolating bacteria from the catfish skin and intestine, analyzing their biochemical characteristics, and conducting antimicrobial susceptibility testing. Fungi present in the catfish samples were also identified. The Gram-negative isolates were subjected to antibiotic susceptibility testing, revealing the prevalence of multidrug-resistant strains. The findings contribute to the understanding of antibiotic resistance in aquaculture and highlight the need for appropriate management strategies. The bacterial load in different catfish samples was examined through total plate counts and dilution effects. The results revealed variations in colony counts and CFU/ml values among the samples, with the highest bacterial load observed in the skin of large catfish. The bacterial load observed in the skin of catfish ranged from 4.7 X 103 CFU/ml to 9.8 X 103 CFU/ml, while the bacterial load observed in the intestine of catfish ranged from 3.1 X 103 CFU/ml to 5.4 X 103 CFU/ml. Biochemical testing identified specific organisms, including Enterobacter cloacae, Aeromonas hydrophila, Klebsiella pneumoniae, Citrobacter brakii, Citrobacter freundii, and Enterobacter aerogenes. Varying resistance patterns emphasize the need for careful antibiotic use and infection control in catfish aquaculture. Therefore, continuous monitoring and preventive measures are recommended.

Article Details

How to Cite
Lateef, E. O., Banjo, T. T., Dunkwu T. C., Okodogbe, H. O., & Olabode, O. M. (2025). Antibiotic Susceptibility Profile of Gram-Negative Bacteria Isolated From Pond Catfish in Ketu Adie-Owe, Ado-Odo Local Government Area of Ogun State, Nigeria. International Journal of Pharmaceutical and Bio Medical Science, 5(1), 45–54. https://doi.org/10.47191/ijpbms/v5-i1-09
Section
Articles

References

I. Adeshina, I., Abdurahman, S. A., & Yusuf, A. A. (2016). Occurrence of Klebsiella species in cultured African catfish in Oyo state, South-west of Nigeria. Nigerian Veterinary Journal, 37(1), 24-31.

II. Assefa, A., & Abunna, F. (2018). Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Veterinary Medicine International, 2018, 1–10.

III. Gelband, H., Miller -Petrie, M., Pant, S., Gandra, S., Levinson, J. and Barter, D. (2015). The state of the world’s antibiotics 2015. Wound Healing Southern Africa 8, 30 – 34.

IV. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K. M., Wertheim, H. F. L., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., Cars, O. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057–1098.

V. Wesgate, R., Grasha, P., & Maillard, J. Y. (2016). Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. American Journal of Infection Control, 44(4), 458–464.

VI. Cabello, F. C., Godfrey, H. P., Buschmann, A. H., & Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet Infectious Diseases, 16(7), e127–e133.

VII. Arzanlou, M., Chai, W., & Venter, H. (2017). Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays in Biochemistry, 61(1), 49–59.

VIII. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654.

IX. Henriksson, P. J. G., Belton, B., Jahan, K. M. E., & Rico, A. (2018). Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proceedings of the National Academy of Sciences, 115(12), 2958–2963.

X. Marshall, B. M., & Levy, S. B. (2011). Food Animals and Antimicrobials: Impacts on Human Health. Clinical Microbiology Reviews, 24(4), 718–733.

XI. Boss, R., Overesch, G., & Baumgartner, A. (2016). Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland. Journal of Food Protection, 79(7), 1240–1246.

XII. Yada, T. and Tort, L. (2016). Stress and disease resistance: immune system and immunoendocrine interactions. Fish Physiology, 35, 365–403.

XIII. Liu, X., Steele, J. C. and Meng, X. Z. (2017). Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 223, 161–169.

XIV. Ringø, E., Olsen, R. E., Jensen, I., Romero, J., & Lauzon, H. L. (2014). Application of vaccines and dietary supplements in aquaculture: possibilities and challenges. Reviews in Fish Biology and Fisheries, 24(4), 1005–1032.

XV. Okocha, R. C., Olatoye, 1. 0., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture. Public health reviews, 39(1). 1-22.

XVI. Abadi, A. T. B., Rizvanov, A. A., Haerdé, T., & Blatt, N. L. (2019). World Mcalth Organization report: current crisis of antibiotic resistance Bio Nanoscience, 9(4), 778-788.

XVII. Suzuki, S., Pruden, A., Vinta, M., & Zhang, T. (2017). Antibiotic resistance in aquatic systems. Frontiers in microbiology, 8, 14.

XVIII. Gauthier, D.T. (2015) Bacterial Zoonoses of Fishes: A Review and Appraisal of Evidence for Linkages between Fish and Human Infections. The Veterinary Journal, 203, 27-35.

XIX. Tan, S. Z., Walkden, A., Au, L., Fullwood, C., Hamilton, A., Qamruddin, A., Armstrong, M., Brahma, A. K., & Carley, F. (2017). Twelve-year analysis of microbial keratitis trends at a UK tertiary hospital. Eye, 31(8), 1229–1236.

XX. Zhang, Z., Cao, K., Liu, J., Wei, Z., Xu, X., & Liang, Q. (2022). Pathogens and Antibiotic Susceptibilities of Global Bacterial Keratitis: A Meta-Analysis. Antibiotics, 11(2), 238.

XXI. Wang, J. J., Lai, C. H., Chen, C. Y., Liu, C. Y., Lin, M. H., Yang, Y. H., & Wu, P. L. (2022). Trends in Infectious Keratitis in Taiwan: An Update on Predisposing Factors, Microbiological and Antibiotic Susceptibility Patterns. Diagnostics, 12(9), 2095.

XXII. Yadav, L., Ansari, S., Yadav, S., & Yadav, R. (2021). Bacteriological profile of pyogenic infections at a Tertiary Care Centre of Nepal. Microbes and Infectious Diseases, 0(0), 0–0.

XXIII. Mohammed, H. H., & Peatman, E. (2018). Winter kill in intensively stocked channel catfish (Ictalurus punctatus): Coinfection with Aeromonas veronii, Streptococcus parauberis and Shewanella putrefaciens. Journal of Fish Diseases, 41(9), 1339–1347.

XXIV. Clinical and Laboratory Standards Institute (CLSI). (2020). Performance standards for Antimicrobial Susceptibility Testing. 31st ed. Fountain Journal of Natural and Applied Sciences2022; 11(1): 13-2120.

XXV. Davin-Regli, A., & Pagès, J. M. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology, 6.

XXVI. Grundmann, H., Glasner, C., Albiger, B., Aanensen, D. M., Tomlinson, C. T.,Andrasević, A. T., et al. (2017). Occurrence of Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli in the European Survey of Carbapenemase-Producing Enterobacteriaceae (Escape), Multinational Study. Lancet Infect. Dis. 30257-2

XXVII. Price, K. E., DeFuria, M. D., & Pursiano, T. A. (1976). Amikacin, an Aminoglycoside with Marked Activity against Antibiotic-Resistant Clinical Isolates. Journal of Infectious Diseases, 134(Supplement 2), S249–S261.

XXVIII. Riedel, S., Boire, N., Carson, K. A., Vadlamudi, A., Khuvis, J., Vadlamudi, V., Atukorale, V., Riedel, V. A. A., & Parrish, N. M. (2019). A survey of antimicrobial resistance in Enterobacteriaceae isolated from the Chesapeake Bay and adjacent upper tributaries. MicrobiologyOpen, 8(9).

XXIX. Huang, Y., Xi, H., Song, W., Xia, X., Huang, Y., Ye, Q., Han, L. and Chen, H., 2022. High prevalence and genomic analysis of extensively drug-resistant Klebsiella pneumoniae isolates from patients with lower respiratory tract infections. Frontiers in Microbiology, p.8957.

XXX. Kyule, D.M. (2019). Profiles, Diversity and Antibiotic Response Patterns of Bacterial Isolates from Fish and Processed Fish Products Retailed in Kirinyaga County, Kenya.

XXXI. Skwor, T., Shinko, J., Augustyniak, A., Gee, C., & Andraso, G. (2014). Aeromonas hydrophila and Aeromonas veronii predominate among potentially pathogenic ciprofloxacin- and tetracycline-resistant Aeromonas isolates from lake erie. Applied and Environmental Microbiology, 80(3), 841-848.

XXXII. ] Kuai, S., Shao, H., Huang, L., Hao, P., Lu, Z., Wang, W., … & Li, J. (2014). Kpc-2 carbapenemase and dha-1 ampc determinants carried on the same plasmid in Enterobacter aerogenes. Journal of Medical Microbiology, 63(3), 367-370.

XXXIII. Nomeh, O., Federica, O., Joseph, O., Moneth, E., Ogba, R., Nkechi, O., … & Iroha, I. (2023). Detection of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae implicated in urinary tract infection. Asian Journal of Research in Infectious Diseases, 15-23.