Effect Toxicity of Silver Nanoparticles on Biochemical Markers and Oxidative Stress in Adult Male Wistar Rats

Main Article Content

Prof. Dr. Najlaa Abdulameer Ali Al-Dahhan
Prof. Dr. Hawraa Abdulameer Ali Al-Dahhan

Abstract

Background: The assessment the health risks of silver nanoparticles (AgNPs) has become extremely important due to increase their use in all fields i.e., health,industry ,commerce etc.


Objectives: To assess the toxicity of oral AgNPs by assessing the activity of liver enzymes; AST, ALT, GGT,and ALP.Also,assess induction of ROS and the concentration of LHP in male Wistar rats.


Materials and Methods: The study included 60 adult male Wistar rats, divided into five groups in each group 12 rats, groups 1 to 4 were orally exposed to  AgNPs,once daily for one week at doses of 10,35,75 and 100 mg/kg,Bwt. The fifth group included acontrol group.Venous blood was collected after 24 hours of end the experiment. Serum TP,TBil and Alb were measured using an autoanalyzer.The chromatic method was used to measure serum ALT,AST,ALP ,and GGT levels according to the instructions of trade kits were obtained from Sigma-Aldrich. LHP kits purchased from Calbiochem.ROS production were estimate according to Lawler et al.method  Results: No significant changes were observed in serumTP, TBil, and Alb levels between rats groups that orally exposed to AgNPs and the control group(P>0.05).Increased serum ALT,AST,ALP, GGT levels,induction of ROS and increased concentration of LHP in rats groups that orally exposed to AgNPs with increasing dose concentration of AgNPs compared with control group(p<0.05).The highest two doses(75 and100)mg/kg showed increase statistically significant in levels of enzymes,LHP concentration,and induction ROS in rats groups that orally exposed to AgNPs compared to other and controls (p<0.05).The results from DLS showed agglomeration of AgNPs more than their base volume and the potential value of Zeta AgNPs was-35mV.Histopathological examination show occurrence of central vein damage,hepato cellular vacuolation, necrosis and Pycknotic in livers of rats after exposed to AgNPs.


Conclusions: Depending on these findings,it can be said that the short-term administration of high doses from silver nanoparticles causes increased serum enzymes activity,increased LHPconcentration,oxidative stress, stimulation of  ROS and organ toxicity.

Article Details

How to Cite
Prof. Dr. Najlaa Abdulameer Ali Al-Dahhan, & Prof. Dr. Hawraa Abdulameer Ali Al-Dahhan. (2024). Effect Toxicity of Silver Nanoparticles on Biochemical Markers and Oxidative Stress in Adult Male Wistar Rats. International Journal of Pharmaceutical and Bio Medical Science, 4(12), 998–1003. https://doi.org/10.47191/ijpbms/v4-i12-12
Section
Articles

References

I. Ajobola,I.O.;Adenike,S. F.; Afolabi,S. A.; Toba,A. A.; Olayinka,A. J.; Adeiza, O.D.; Damilare,R.;Filibus,M.R.andStephen,A.O.(2019).Cypermethrin and chlorpyrifos raises serum urea level and causes abnormal sperm morphology in Wistar rats.J.Open Access;9(3):3969 – 3973.

II. Akradi,L.;Sohrabi-Haghdoost,I.and Djeddi, A.N.(2012).Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens.African Journal of Biotechnology;11(22): 6207-6211.

III. Anita, K. p.;Diahanna, H.and Paul, B.T.(2015). Silver nanoparticle induced oxidative stressdependent toxicity in sprague-dawley rats. mol cell biochem.;399(0):257–268.

IV. Anreddy, R.N.; Yellu, N.R. and Devarakonda, K.R.(2013). Oxidative biomarkers to assess the nanoparticleinduced oxidative stress. Methods Mol Biol.;1028:205–219.

V. Asare, N.; Instanes, C.; Sandberg,W.J.;Refsnes, M.;Schwarze, P.and Kruszewski, M.(2012). Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology.;291(1-3):65–72.

VI. Bartlomiejczyk, T.; Lankoff, A.; Kruszewski, M.and Szumiel,I.(2013). Silver nanoparticles – allies or adversaries?. Ann Agric Environ Med.;20(1):48–54.

VII. De Zwart, L.L.; Meerman, J.H.;Commandeur ,J.N.andVermeulen, N.P.(1999). Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med Jan.; 26(1–2):202–26.

VIII. Dziendzikowska, K.; Gromadzka-Ostrowska, J.; Lankoff, A.; Oczkowski,M.; Krawczynska, A.and Chwastowska, J .(2012). Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol.;32(11):920–8.

IX. Eckle, V.S.; Buchmann, A.; Bursch, W.;Schulte-Hermann, R. and Schwarz,M. (2004). Immunohistochemical detection of activated caspases in apoptotic hepatocytes in rat liver.Toxicol Pathol.;32(1):9–15.

X. Gavanji, S.; Sana Sayedipour,S.; Doostmohammadi,M. and Larki,B.(2014). The Effect of different Concentrations of Silver Nanoparticles on Enzyme Activity and Liver Tissue of Adult Male Wistar Rats in-vivo Condition. International J Scientific Research in Knowledge; 2(4):182-188.

XI. Geho, D.H.; Jones, C.D.; Petricoin, E.F.and Liotta,L.A.(2006). Nanoparticles: potential biomarker harvesters.Curr Opin Chem Biol.;10(1):56–61.

XII. Giles,A.R. (1987).Guidelines for the use of animals in biomedical research.Thromb Haemost.; 58(4):1078–1084.

XIII. Goodarzi ,M.T.; Tootoonchi, A.S.; Karimi ,J.and Abbasi Oshaghi, E. (2014).Anti-diabetic effects of aqueous extracts of three Iranian medicinal plants in type 2 diabetic rats induced by high fructose diet. Avi J Med Biochem.;1:7–13.

XIV. Mohammadi ,A.;Vafaei, S.A.; Moradi, M.N.; Ahmadi, M.; Pourjafar, M.and Oshaghi, E.A.(2015). Combination of ezetimibe and garlic reduces serum lipids and intestinal niemann-pick C1-like 1 expression more effectively in hypercholesterolemic mice. Avicenna J Med Biochem.;3(1).

XV. Gutteridge, J.M.C.and Quinlan, G.J. (1983).Malondialdehyde formation from lipid peroxides in thiobarbituric acid test. The role of lipid radicals, iron salts and metal chelator. J Appl Biochem.; 5:293–299.

XVI. Halliwell,B.(1984). Oxygen radicals:A common sense look at their nature and medical importance. Med Biol.;62:71–77.

XVII. Murray, R.K.; Granner, D.K.; Mayes, P.A. and Rodwell, V.W.(1988). Harper’s Biochemistry. 21. Englewood Cliffs, NJ: Prentice Hall:138-139.

XVIII. Hadrup, N.and Lam ,H.R.(2014). Oral toxicity of silver ions, silver nanoparticles and colloidal silver-areview. Regulatory Toxicol and Pharmacol.;68:1–7.

XIX. Humason,G. L.(1967). Animal Tissue Techniques.2nd edn.,W. H. Freeman Company, San Francisco. Biochemical Assays.

Munger, M.A.; Radwanski, P.; Hadlock, G.C.; Stoddard, G.; Shaaban, A.and Falconer, J. (2014). In vivo human time-exposure study of orally dosed commercial silver nanoparticles.Nanomedicine.;10(1):1–9.

XX. Hussain, S.M.and Schlager,J.J.(2009). Safety evaluation of silver nanoparticles: inhalation model for chronic exposure.Toxicol Sci.;108(2):223–4.

XXI. Moudgi ,B.M.and Robert, S.M. (2006).Designing asterategies for safety evaluation of nanomaterials.Partnano-interface in a microfluidic chip to probe livingVI.Characteri zation of nanoscale particles for cells:challenges and perspectives. Toxicological Science USA;103:6419-6424.

XXII. Kim, Y.S.; Kim JS, Cho HS, Rha DS, Kim JM, Park J.D.(2008). Twentyeight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol.;20(6):575–83.

XXIII. Kulthong, K.; Maniratanachote, R.; Kobayashi ,Y.; Fukami, T.and Yokoi ,T. (2012).Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica.; 42(9):854–62.

XXIV. Lawler, J.M.; Song, W.and Demaree, S.R.(2003). Hindlimb unloading increases oxidative stress and disrupt antioxidant capacity in skeletal muscle.Free Radical Biol Med.; 35:9–16.

XXV. Ling song, X.; Li, B.and Xu, K. (2012). Citotoxicity of watersoluble Mpeg-SH-coated silver nanoparticles in HL-7702 cells.Cell boiltoxico;l(28):225-237.

XXVI. Miura, N.and Shinohara, Y.(2009).Cytotoxic effect and apoptosis inductionby silver nanoparticles in HeLa cells.Biochem Biophys Res Commun.;390(3):733–7.

XXVII. Parang, Z.and Moghadamnia,D.(2018). Effects of silver nanoparticles on the functional tests of liver and its histological changes in adult male rats.J.Nanomed Res.;3(3):146-153.

XXVIII. Park, E.J.; Bae, E.; Yi, J.; Kim,Y.; Choi, K.; Lee, S.H.; Yoon, J.; Lee, B.C.and Park , K.(2010). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles.Environ Toxicol Pharmacol.; 30(2):162–168.

XXIX. Pourhamzeh,M.; Gholami,Z. M.; Saidijam,M.; Javad,M. A. and Alizadeh,Z.(2016). he Effect of Silver Nanoparticles on the Biochemical Parameters of Liver Function in Serum, and the Expression of Caspase-3 in the Liver Tissues of Male Rats. Avicenna J Med Biochem.;4(2):35557.

XXX. Pratsinis,A.;Hervells,P.;Leroux,J.C.;Pratsinis,S.E. and Sotiriou,G.A.(2013). Toxicity of silver nanoparticles in macrophages. Small.;9(15):2576–2584.

XXXI. Tampa,M.; Mitran,M.I.;Mitran,C.I.;Sarbu ,M.I.; Matei,C.; Nicolae,I.; Caruntu,A.; Tocut,S.M.; Popa,M.I.;Caruntu ,C.and Georgescu,S.R.(2018). Mediators of Inflammation- A Potential Source of Biomarkers in Oral Squamous Cell Carcinoma, J. Immunology Research, Article ID 1061780, 12 pages.

XXXII. Wu, Y.and Zhou,Q.(2013). Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure.Environ Toxicol Chem.;32(1):165–173.

XXXIII. Xia,T.;Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.;Sioutas, C.;Yeh, J.I.;Wiesner,M.R. and Nei, A.E.(2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.Nano Lett.; 6:1794–1807.

XXXIV. Xu, L.; Li, X.;Takemura, T.;Hanagata, N.;Wu, G.and Chou, L.L. (2012). Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J Nanobiotechnology;10:16.