Effects of Functionalized Carbon Nanotube on Cellular Homeostasis of Murine Hepatocytes

Main Article Content

Krissia F. Godoy
Joice M. A. Rodolpho
Bruna D. L. Fragelli
Marcelo Assis
Carlos Speglich
Elson Longo
Fernanda F. Anibal

Abstract

Nanotechnology in medicine represents a revolution offering significant advancements in the diagnosis, treatment, and prevention of diseases. This technology enables the development of devices and materials at the nanometer scale, allowing precise interactions with biological systems at the molecular and cellular levels. Among various nanomaterials, carbon nanotubes (CNTs) stand out due to their unique physical, chemical and mechanical properties. Due to their high strength, electrical and thermal conductivity and large surface area, CNTs have a wide range of applications. In healthcare they are explored for drug delivery and imaging diagnostics. CNTs can be functionalized to target drugs directly to diseased cells, minimizing side effects and enhancing treatment efficacy, additionally can be used in biosensors for early disease detection and in tissue engineering to cellular regeneration. The present study evaluated the effects of OCNT-TEPA, a multi-walled carbon nanotube functionalized, in murine hepatocytes AML-12. Cells were exposed to different concentrations of the sample for 12, 24, 48, and 72 hours. Cellular metabolism tests, cellular morphology by optical microscopy, synthesis of reactive oxygen species, changes in membrane potential and IL-6 cytokine secretion were performed. The results show that OCNT-TEPA altered the homeostasis of hepatocytes, as cellular metabolism decreased, cellular morphology was altered, the membrane experienced changes in its electrical potential, oxidative stress increased and inflammatory signaling molecules were synthesized. This alteration is dose-dependent, which may be harmful to hepatocytes at high concentrations but could be applied to the body at lower concentrations without causing harm.

Article Details

How to Cite
Godoy, K. F., Joice M. A. Rodolpho, Bruna D. L. Fragelli, Marcelo Assis, Carlos Speglich, Elson Longo, & Fernanda F. Anibal. (2024). Effects of Functionalized Carbon Nanotube on Cellular Homeostasis of Murine Hepatocytes. International Journal of Pharmaceutical and Bio Medical Science, 4(10), 816–825. https://doi.org/10.47191/ijpbms/v4-i10-06
Section
Articles

References

I. R. Duncan, R. Gaspar, Nanomedicine(s) under the Microscope, Mol Pharm 8 (2011) 2101–2141. https://doi.org/10.1021/mp200394t.

II. S.V.M.D.M.DASARATHA. REVATHI, CARBON NANOTUBE: A FLEXIBLE APPROACH FOR NANOMEDICINE AND DRUG DELIVERY SUNDARAMOORTHY REVATHI*, MADHULATHA VUYYURU, MAGHARLA DASARATHA DHANARAJU, Carbon N Y 8 (201AD) 25–31.

III. D. Mohanta, S. Patnaik, S. Sood, N. Das, Carbon nanotubes: Evaluation of toxicity at biointerfaces, J Pharm Anal 9 (2019) 293–300. https://doi.org/10.1016/j.jpha.2019.04.003.

IV. R. Rauti, M. Musto, S. Bosi, M. Prato, L. Ballerini, Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come?, Carbon N Y 143 (2019) 430–446.

https://doi.org/10.1016/j.carbon.2018.11.026.

V. R. Shoukat, M.I. Khan, Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology, Microsystem Technologies 27 (2021) 4183–4192.

https://doi.org/10.1007/s00542-021-05211-6.

VI. S. Zhang, A. Hao, N. Nguyen, A. Oluwalowo, Z. Liu, Y. Dessureault, J.G. Park, R. Liang, Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering, Carbon N Y 144 (2019) 628–638. https://doi.org/10.1016/j.carbon.2018.12.091.

VII. S. El Garouge, M. Tarfaoui, H. El Minor, A. Bendarma, The improvement of the physical and mechanical properties of CNTs based composite material, in: Mater Today Proc, Elsevier Ltd, 2021: pp. 64–70. https://doi.org/10.1016/j.matpr.2021.10.312.

VIII. H. Zare, S. Ahmadi, A. Ghasemi, M. Ghanbari, N. Rabiee, M. Bagherzadeh, M. Karimi, T.J. Webster, M.R. Hamblin, E. Mostafavi, Carbon Nanotubes: Smart Drug/Gene Delivery Carriers, Int J Nanomedicine Volume 16 (2021) 1681–1706. https://doi.org/10.2147/IJN.S299448.

IX. M. Higuchi, H. Takagi, Y. Owada, T. Inoue, Y. Watanabe, T. Yamaura, M. Fukuhara, S. Muto, N. Okabe, Y. Matsumura, T. Hasegawa, A. Yonechi, J. Osugi, M. Hoshino, Y. Shio, K. Fujiu, R. Kanno, A. Ohishi, H. Suzuki, M. Gotoh, Efficacy and tolerability of nanoparticle albumin-bound paclitaxel in combination with carboplatin as a late-phase chemotherapy for recurrent and advanced non-small-cell lung cancer: A multi-center study of the fukushima lung cancer association group of surgeons, Oncol Lett 13 (2017) 4315–4321. https://doi.org/10.3892/ol.2017.5998.

X. K.H. Son, J.H. Hong, J.W. Lee, Carbon nanotubes as cancer therapeutic carriers and mediators, Int J Nanomedicine 11 (2016) 5163–5185. https://doi.org/10.2147/IJN.S112660.

XI. K.F. de Godoy, J.M. de Almeida Rodolpho, B.D. de Lima Fragelli, L. Camillo, P. Brassolatti, M. Assis, C.T. Nogueira, C. Speglich, E. Longo, F. de F. Anibal, Cytotoxic Effects Caused by Functionalized Carbon Nanotube in Murine Macrophages, Cellular Physiology and Biochemistry 56 (2022) 514–529. https://doi.org/10.33594/000000573.

XII. M.C.F.S. Lima, S.Z.S. do Amparo, E.J. Siqueira, D.R. Miquita, V. Caliman, G.G. Silva, Polyacrylamide copolymer/aminated carbon nanotube‐based aqueous nanofluids for application in high temperature and salinity, J Appl Polym Sci 135 (2018). https://doi.org/10.1002/app.46382.

XIII. Y. Liu, S. Zhu, Z. Gu, C. Chen, Y. Zhao, Toxicity of manufactured nanomaterials, Particuology 69 (2022) 31–48. https://doi.org/10.1016/j.partic.2021.11.007.

XIV. J.E. Hulla, S.C. Sahu, A.W. Hayes, Nanotechnology: History and future, Hum Exp Toxicol 34 (2015) 1318–1321. https://doi.org/10.1177/0960327115603588.

XV. T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, 1983.

XVI. [16] G. Repetto, A. del Peso, J.L. Zurita, Neutral red uptake assay for the estimation of cell viability/ cytotoxicity, Nat Protoc 3 (2008) 1125–1131. https://doi.org/10.1038/nprot.2008.75.

XVII. C.P. Wan, E. Myung, B.H.S. Lau, An automated micro-fluorometric assay for monitoring oxidative burst activity of phagocytes, 1993.

XVIII. A. Baracca, G. Sgarbi, G. Solaini, G. Lenaz, Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1606 (2003) 137–146. https://doi.org/10.1016/S0005-2728(03)00110-5.

XIX. BD OptEIA TM Materials Provided, Human IL-6 ELISA Set, n.d.

www.bdbiosciences.com/us/s/resources.

XX. K.F. de Godoy, J.M. de Almeida Rodolpho, P. Brassolatti, B.D. de Lima Fragelli, C.A. de Castro, M. Assis, J. Cancino Bernardi, R. de Oliveira Correia, Y.R. Albuquerque, C. Speglich, E. Longo, F. de Freitas Anibal, New Multi-Walled carbon nanotube of industrial interest induce cell death in murine fibroblast cells, Toxicol Mech Methods 31 (2021) 517–530. https://doi.org/10.1080/15376516.2021.1930311.

XXI. K. Bhattacharya, S.P. Mukherjee, A. Gallud, S.C. Burkert, S. Bistarelli, S. Bellucci, M. Bottini, A. Star, B. Fadeel, Biological interactions of carbon-based nanomaterials: From coronation to degradation, Nanomedicine 12 (2016) 333–351. https://doi.org/10.1016/j.nano.2015.11.011.

XXII. S. Dutta, S. Prasad Mishra, A. Kumar Sahu, K. Mishra, P. Kashyap, B. Sahu, Hepatocytes and Their Role in Metabolism, in: Drug Metabolism, IntechOpen, 2021.

https://doi.org/10.5772/intechopen.99083.

XXIII. L. Di Cristo, M.G. Bianchi, M. Chiu, G. Taurino, F. Donato, G. Garzaro, O. Bussolati, E. Bergamaschi, Comparative in vitro cytotoxicity of realistic doses of benchmark multi-walled carbon nanotubes towards macrophages and airway epithelial cells, Nanomaterials 9 (2019). https://doi.org/10.3390/nano9070982.

XXIV. S. Nahle, R. Safar, S. Grandemange, B. Foliguet, M. Lovera‐Leroux, Z. Doumandji, A. Le Faou, O. Joubert, B. Rihn, L. Ferrari, Single wall and multiwall carbon nanotubes induce different toxicological responses in rat alveolar macrophages, Journal of Applied Toxicology 39 (2019) 764–772. https://doi.org/10.1002/jat.3765.

XXV. V. Stone, H. Johnston, R.P.F. Schins, Development of in vitro systems for nanotoxicology: methodological considerations, Crit Rev Toxicol 39 (2009) 613–626. https://doi.org/10.1080/10408440903120975.

XXVI. C.P. Firme, P.R. Bandaru, Toxicity issues in the application of carbon nanotubes to biological systems, Nanomedicine 6 (2010) 245–256. https://doi.org/10.1016/j.nano.2009.07.003.

XXVII. K. Aschberger, H.J. Johnston, V. Stone, R.J. Aitken, S.M. Hankin, S.A.K. Peters, C.L. Tran, F.M. Christensen, Review of carbon nanotubes toxicity and exposure-appraisal of human health risk assessment based on open literature, Crit Rev Toxicol 40 (2010) 759–790.

https://doi.org/10.3109/10408444.2010.506638

XXVIII. G. Vuković, A. Marinković, M. Obradović, V. Radmilović, M. Čolić, R. Aleksić, P.S. Uskoković, Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes, Appl Surf Sci 255 (2009) 8067–8075. https://doi.org/10.1016/j.apsusc.2009.05.016.

XXIX. I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry 12 (2019) 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

XXX. M.P. Holsapple, W.H. Farland, T.D. Landry, N.A. Monteiro-Riviere, J.M. Carter, N.J. Walker, K. V. Thomas, Research strategies for safety evaluation of nanomaterials, part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs, Toxicological Sciences 88 (2005) 12–17. https://doi.org/10.1093/toxsci/kfi293.

XXXI. M. D. D’Ischia et al, Nanoparticle Size and the Evasion of Hepatic Uptake: Mechanistic Insights, J Nanobiotechnology 8 (2020) 1–12.

XXXII. J. W. Kim et al., Size-Dependent Cellular Uptake of Nanoparticles and Their Impact on Hepatic Function, Biomaterials 34 (2013) 4911–4922.

XXXIII. S. Clichici, A.R. Biris, F. Tabaran, A. Filip, Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats, Toxicol Appl Pharmacol 259 (2012) 281–292. https://doi.org/10.1016/j.taap.2012.01.004.

XXXIV. D. Mohanta, S. Patnaik, S. Sood, N. Das, Carbon nanotubes: Evaluation of toxicity at biointerfaces, J Pharm Anal 9 (2019) 293–300. https://doi.org/10.1016/j.jpha.2019.04.003.

XXXV. S.K. Prajapati, A. Malaiya, P. Kesharwani, D. Soni, A. Jain, Biomedical applications and toxicities of carbon nanotubes, Drug Chem Toxicol 45 (2022) 435–450.

https://doi.org/10.1080/01480545.2019.1709492.

XXXVI. G. Visalli, A. Facciolà, M. Currò, P. Laganà, V. La Fauci, D. Iannazzo, A. Pistone, A. Di Pietro, Mitochondrial impairment induced by sub-chronic exposure to multi-walled carbon nanotubes, Int J Environ Res Public Health 16 (2019). https://doi.org/10.3390/ijerph16050792.

XXXVII. J.X. Monian P, Clearing the final hurdles to mitochindrial apoptosis: Regulation post cytochrome C release., Exp Oncol 34 (2012) 185–191.

XXXVIII. P.P. Fu, Q. Xia, H.-M. Hwang, P.C. Ray, H. Yu, Mechanisms of nanotoxicity: Generation of reactive oxygen species, J Food Drug Anal 22 (2014) 64–75.

https://doi.org/10.1016/j.jfda.2014.01.005.

XXXIX. H. Sies, Oxidative stress: Concept and some practical aspects, Antioxidants 9 (2020) 1–6. https://doi.org/10.3390/antiox9090852.

XL. O. Sabido, A. Figarol, J.P. Klein, V. Bin, V. Forest, J. Pourchez, B. Fubini, M. Cottier, M. Tomatis, D. Boudard, Quantitative flow cytometric evaluation of oxidative stress and mitochondrial impairment in raw 264.7 macrophages after exposure to pristine, acid functionalized, or annealed carbon nanotubes, Nanomaterials 10 (2020).

https://doi.org/10.3390/nano10020319.

XLI. L. Zhou, H.J. Forman, Y. Ge, J. Lunec, Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion, Toxicology in Vitro 42 (2017) 292–298.

https://doi.org/10.1016/j.tiv.2017.04.027.

XLII. A.A. Shvedova, A. Pietroiusti, B. Fadeel, V.E. Kagan, Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress, Toxicol Appl Pharmacol 261 (2012) 121–133.

https://doi.org/10.1016/j.taap.2012.03.023.

XLIII. A.A. Shvedova, A. Pietroiusti, B. Fadeel, V.E. Kagan, Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress, Toxicol Appl Pharmacol 261 (2012) 121–133.

https://doi.org/10.1016/j.taap.2012.03.023.

XLIV. N. Kobayashi, H. Izumi, Y. Morimoto, Review of toxicity studies of carbon nanotubes, J Occup Health 59 (2017) 394–407. https://doi.org/10.1539/joh.17-0089-RA.

XLV. K. Yamashita, Y. Yoshioka, K. Higashisaka, Y. Morishita, T. Yoshida, M. Fujimura, H. Kayamuro, H. Nabeshi, T. Yamashita, K. Nagano, Y. Abe, H. Kamada, Y. Kawai, T. Mayumi, T. Yoshikawa, N. Itoh, S.I. Tsunoda, Y. Tsutsumi, Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape, Inflammation 33 (2010) 276–280. https://doi.org/10.1007/s10753-010-9182-7.

XLVI. Y. Yao, T. Zhang, M. Tang, Toxicity mechanism of engineered nanomaterials: Focus on mitochondria, Environmental Pollution 343 (2024). https://doi.org/10.1016/j.envpol.2023.123231.

XLVII. J.M. De Almeida Rodolpho, K.F. De Godoy, P. Brassolatti, B.D. De Lima Fragelli, C.A. De Castro, M. Assis, C. Speglich, J. Cancino-Bernardi, E. Longo, F. De Freitas Anibal, Apoptosis and oxidative stress triggered by carbon black nanoparticle in the LA-9 fibroblast, Cellular Physiology and Biochemistry 55 (2021) 364–377.

https://doi.org/10.33594/000000382.

XLVIII. S. Basuroy, D. Tcheranova, S. Bhattacharya, C.W. Leffler, H. Parfenova, Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis, American Journal of Physiology-Cell Physiology 300 (2011) C256–C265. https://doi.org/10.1152/ajpcell.00272.2010.

XLIX. J.M. de A. Rodolpho, K.F. de Godoy, P. Brassolatti, B.D. de L. Fragelli, L. Camillo, C.A. de Castro, C.T. Nogueira, M. Assis, C. Speglich, E. Longo, F. de F. Anibal, Carbon Black CB-EDA Nanoparticles in Hepatocytes: Changes in the Oxidative Stress Pathway, International Journal Of Pharmaceutical And Bio-Medical Science 02 (2022) 679–686. https://doi.org/10.47191/ijpbms/v2-i12-16.

L. B. Pei, W. Wang, N. Dunne, X. Li, Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects, Nanomaterials 9 (2019) 1501. https://doi.org/10.3390/nano9101501.

LI. P. Newman, A. Minett, R. Ellis-Behnke, H. Zreiqat, Carbon nanotubes: Their potential and pitfalls for bone tissue regeneration and engineering, Nanomedicine 9 (2013) 1139–1158.

https://doi.org/10.1016/j.nano.2013.06.001.

LII. J. Chłopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak, F. Béguin, In vitro studies of carbon nanotubes biocompatibility, Carbon N Y 44 (2006) 1106–1111. https://doi.org/10.1016/j.carbon.2005.11.022.

LIII. T. Hirano, IL-6 in inflammation, autoimmunity and cancer, Int Immunol 33 (2021) 127–148. https://doi.org/10.1093/intimm/dxaa078.