Exploring the Intersection of Cellular Regulation, Aging, and Disease Insights into Mechanisms and Implications

Main Article Content

Imran Rashid
Rajip Nepa
Abhishek Kumar
Navneet Kaur
Dr Mohit Kumar
Dr Loveleen Preet Kaur

Abstract

This thorough analysis explores the complex interactions between aging, the beginning of different diseases, and cellular control, with a special emphasis on neurodegeneration. Sustaining cellular homeostasis requires cellular regulation, which includes signaling pathways, proteostasis, and organelle communication. Age-related problems can result from intricate pathways that are currently poorly understood. These disorders range from cardiovascular ailments to neurodegenerative conditions like Alzheimer's and Parkinson's diseases. Oxidative stress is a major contributor to metabolic syndrome and aging. It is caused by an imbalance between the formations of reactive oxygen species (ROS) and antioxidant defense mechanisms. Moreover, changes in intracellular pH levels have been connected to neurodegenerative illnesses and the aging process, suggesting a new direction for research into the causes of and possible preventions for age-related neurodegeneration. Autophagy is an essential process for cellular upkeep that is critical to neurodegenerative pathways and brain aging because it promotes the breakdown of toxic chemicals and damaged organelles. Furthermore, aging and longevity are greatly influenced by the reduction in cellular energy metabolism, which is controlled by conserved pathways including mTORC and insulin/IGF1. Furthermore, it is noted that protein misfolding and aggregation are essential mechanisms in neurodegenerative illnesses that cause neuronal populations to malfunction and die. Knowing how these variables interact dynamically offers important insights into the pathophysiology of disease and the dynamics of aging, perhaps pointing to new therapeutic targets for the prevention and treatment of age-related disorders.

Article Details

How to Cite
Rashid, I. ., Nepa, R. ., Abhishek Kumar, Navneet Kaur, Dr Mohit Kumar, & Dr Loveleen Preet Kaur. (2024). Exploring the Intersection of Cellular Regulation, Aging, and Disease Insights into Mechanisms and Implications. International Journal of Pharmaceutical and Bio Medical Science, 4(4), 416–423. https://doi.org/10.47191/ijpbms/v4-i4-24
Section
Articles

References

I. Raimundo N, Kriško A. Cross-organelle communication at the core of longevity. Aging (Albany NY). 2018 Jan;10(1):15.

II. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM, Bohr VA. Protecting the mitochondrial powerhouse. Trends in cell biology. 2015 Mar 1;25(3):158-70.

III. Díaz-Villanueva JF, Díaz-Molina R, García-González V. Protein folding and mechanisms of proteostasis. International journal of molecular sciences. 2015 Jul 28;16(8):17193-230.

IV. Belikov AV. Age-related diseases as vicious cycles. Ageing research reviews. 2019 Jan 1;49:11-26.

V. Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nature Reviews Neuroscience. 2015 May;16(5):249-63.

VI. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience. 2014 May;15(5):300-12.

VII. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. Journal of neurochemistry. 2016 Oct;139:136-53.

VIII. Lee KM, MacLean AG. New advances on glial activation in health and disease. World journal of virology. 2015 May 5;4(2):42.

IX. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox biology. 2017 Apr 1; 11:613-9.

X. Buonocore G, Perrone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. InSeminars in Fetal and Neonatal Medicine 2010 Aug 1 (Vol. 15, No. 4, pp. 186-190). WB Saunders.

XI. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry. 2015 Jan;30:11-26.

XII. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative medicine and cellular longevity. 2016 Oct;2016.

XIII. Alberts B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. cell. 1998 Feb 6;92(3):291-4.

XIV. De Las Rivas J, Fontanillo C. Protein–protein interaction networks: unraveling the wiring of molecular machines within the cell. Briefings in functional genomics. 2012 Nov 1;11(6):489-96.

XV. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. Journal of applied physiology. 2000 Jul 1.

XVI. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes care. 2009 Nov;32(Suppl 2):S157.

XVII. Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, Bernabei R, Onder G. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clinical nutrition. 2012 Oct 1;31(5):652-8.

XVIII. Koo BK, Roh E, Yang YS, Moon MK. Difference between old and young adults in contribution of β‐cell function and sarcopenia in developing diabetes mellitus. Journal of diabetes investigation. 2016 Mar;7(2):233-40.

XIX. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM. Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing. 2019 Jan 1;48(1):16-31.

XX. Halliwell B, Gutteridge J. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical journal. 1984 Apr 4;219(1):1.

XXI. Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007 Jan;292(1):R18-36.

XXII. Bowie A, O’Neill LA. Oxidative stress and nuclear factor-κB activation: a reassessment of the evidence in the light of recent discoveries. Biochemical pharmacology. 2000 Jan 1;59(1):13-23.

XXIII. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. The FASEB journal. 1996 May;10(7):709-20.

XXIV. Linnane A, Ozawa T, Marzuki S, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. The Lancet. 1989 Mar 25;333(8639):642-5.

XXV. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005 Nov 15;112(20):3066-72.

XXVI. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology. 2019 Oct;15(10):565-81.

XXVII. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013 Jun 6;153(6):1194-217.

XXVIII. Chesler M. Regulation and modulation of pH in the brain. Physiological reviews. 2003 Oct;83(4):1183-221.

XXIX. Sinning A, Hübner CA. Minireview: pH and synaptic transmission. FEBS letters. 2013 Jun 27;587(13):1923-8.

XXX. .Obara M, Szeliga M, Albrecht J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochemistry international. 2008 May 1;52(6):905-19.

XXXI. Xiang ZM, Bergold PJ. Synaptic depression and neuronal loss in transiently acidic hippocampal slice cultures. Brain research. 2000 Oct 20;881(1):77-87.

XXXII. Lee BK, Jung YS. Sustained intracellular acidosis triggers the Na+/H+ exchager-1 activation in glutamate excitotoxicity. Biomolecules & Therapeutics. 2017 Nov;25(6):593.

XXXIII. Hamakawa H, Murashita JU, Yamada N, Inubushi T, Kato N, Kato T. Reduced intracellular pH in the basal ganglia and whole brain measured by 31P‐MRS in bipolar disorder. Psychiatry and clinical neurosciences. 2004 Feb;58(1):82-8.

XXXIV. Mandal PK, Akolkar H, Tripathi M. Mapping of hippocampal pH and neurochemicals from in vivo multi-voxel 31P study in healthy normal young male/female, mild cognitive impairment, and Alzheimer's disease. Journal of Alzheimer's disease. 2012 Jan 1;31(s3):S75-86.

XXXV. Roberts Jr EL, Sick TJ. Aging impairs regulation of intracellular pH in rat hippocampal slices. Brain research. 1996 Oct 7;735(2):339-42.

XXXVI. Roberts Jr EL, Chih CP. The influence of age on pH regulation in hippocampal slices before, during, and after anoxia. Journal of Cerebral Blood Flow & Metabolism. 1997 May;17(5):560-6.

XXXVII. Forester BP, Berlow YA, Harper DG, Jensen JE, Lange N, Froimowitz MP, Ravichandran C, Iosifescu DV, Lukas SE, Renshaw PF, Cohen BM. Age‐related changes in brain energetics and phospholipid metabolism. NMR in Biomedicine. 2010 Apr;23(3):242-50.

XXXVIII. Tyrtyshnaia AA, Lysenko LV, Madamba F, Manzhulo IV, Khotimchenko MY, Kleschevnikov AM. Acute neuroinflammation provokes intracellular acidification in mouse hippocampus. Journal of neuroinflammation. 2016 Dec;13:1-1.

XXXIX. Roberts Jr EL, Chih CP. The pH buffering capacity of hippocampal slices from young adult and aged rats. Brain research. 1998 Jan 1;779(1-2):271-5.

XL. Bonnet U, Bingmann D, Speckmann EJ, Wiemann M. Aging is associated with a mild acidification in neocortical human neurons in vitro. Journal of Neural Transmission. 2018 Oct;125:1495-501.

XLI. Ruffin VA, Salameh AI, Boron WF, Parker MD. Intracellular pH regulation by acid-base transporters in mammalian neurons. Frontiers in physiology. 2014 Feb 13;5:74282.

XLII. Raffin CN, Sick TJ, Rosenthal M. Inhibition of glycolysis alters potassium ion transport and mitochondrial redox activity in rat brain. Journal of Cerebral Blood Flow & Metabolism. 1988 Dec;8(6):857-65.

XLIII. Bonnet U, Bingmann D, Wiltfang J, Scherbaum N, Wiemann M. Modulatory effects of neuropsychopharmaca on intracellular pH of hippocampal neurones in vitro. British journal of pharmacology. 2010 Jan;159(2):474-83.

XLIV. Baram TZ, Eghbal-Ahmadi M, Bender RA. Is neuronal death required for seizure-induced epileptogenesis in the immature brain?. Progress in brain research. 2002 Jan 1;135:365-75.

XLV. Yao H, Sadoshima S, Ooboshi H, Sato Y, Uchimura H, Fujishima M. Age-related vulnerability to cerebral ischemia in spontaneously hypertensive rats. Stroke. 1991 Nov;22(11):1414-8.

XLVI. De Duve C, Wattiaux R. Functions of lysosomes. Annual review of physiology. 1966 Mar;28(1):435-92.

XLVII. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010 Dec 3;330(6009):1344-8.

XLVIII. Kim KH, Lee MS. Autophagy—a key player in cellular and body metabolism. Nature Reviews Endocrinology. 2014 Jun;10(6):322-37.

XLIX. Lenoir O, Tharaux PL, Huber TB. Autophagy in kidney disease and aging: lessons from rodent models. Kidney international. 2016 Nov 1;90(5):950-64.

L. Santambrogio L, Cuervo AM. Chasing the elusive mammalian microautophagy. Autophagy. 2011 Jun 1;7(6):652-4.

LI. Russell RC, Yuan H-X, Guan K-L. Autophagy regulation by nutrient signaling. Cell Res. 2014;24(1):42–57.

LII. . Li W, Yang Q, Mao Z. Chaperone-mediated autophagy: machinery, regu lation and biological consequences. Cell Mol Life Sci. 2011;68(5):749-63

LIII. Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17.

LIV. Johnson SC. Nutrient sensing, signaling and ageing: the role of IGF-1 and mTOR in ageing and age-related disease. Biochem Cell Biol Ageing.2018;85:49–97.

LV. Wiley CD, Campisi J. From ancient pathways to aging cells—connecting metabolism and cellular senescence. Cell Metab. 2016;23(6):1013–21.

LVI. Sun X, Komatsu T, Lim J, Laslo M, Yolitz J, Wang C, et al. Nutrient dependent requirement for SOD1 in lifespan extension by protein restriction in Drosophila melanogaster. Aging Cell. 2012;11(5):783–93.

LVII. 57. Chandrasekaran A, Idelchik MPS, Melendez JA. Redox control of senes cence and age-related disease. Redox Biol. 2017;11:91–102.

LVIII. Kapeller R, Cantley LC. Phosphatidylinositol 3-kinase. BioEssays.1994;16(8):565–76.

LIX. Vanhaesebroeck B, Waterfeld MD. Signaling by distinct classes of phos phoinositide 3-kinases. Exp Cell Res. 1999;253(1):239–54.

LX. Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, Wright C.Prolonged longevity of hypopituitary dwarf mice. Exp Gerontol.

LXI. 2001;36(1):21–8.

LXII. Sonntag WE, Deak F, Ashpole N, Csiszar A, Toth P, Freeman W, et al.Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci. 2013;5:27.

LXIII. Sonntag WE, Csiszar A, De Cabo R, Ferrucci L, Ungvari Z. Diverse roles of growth hormone and insulin-like growth factor-1 in mammalian aging:progress and controversies. J Gerontol Series A. 2012;67(6):587–98.

LXIV. Breese CR, Ingram RL, Sonntag WE. Infuence of age and long-term dietary restriction on plasma insulin-like growth factor-1 (IGF-1),

LXV. IGF-1 gene expression, and IGF-1 binding proteins. J Gerontol.1991;46(5):B180–7.

LXVI. D’Costa AP, Ingram RL, Lenham JE, Sonntag WE. The regulation and mechanisms of action of growth hormone and insulin-like growth factor 1 during normal ageing. J Reprod Fertil Suppl. 1993;46:87–98.

LXVII. Khan AS, Sane DC, Wannenburg T, Sonntag WE. Growth hormone,insulin-like growth factor-1 and the aging cardiovascular system.Cardiovasc Res. 2002;54(1):25–35.

LXVIII. Sartorio A, Cattaneo M, Bucciarelli P, Bottasso B, Porretti S, Epaminonda P, et al. Alterations of haemostatic and fbrinolytic markers in adult

LXIX. Patients with growth hormone defciency and with acromegaly. Exp Clin Endocrinol Diabetes. 2000;108(07):486–92.

LXX. Sonntag WE, Carter CS, Ikeno Y, Ekenstedt K, Carlson CS, Loeser RF, et al.Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifes age-related pathology, and increases life span. Endocrinology. 2005;146(7):2920–32.

LXXI. Higashi Y, Sukhanov S, Anwar A, Shai S-Y, Delafontaine P. Aging, athero sclerosis, and IGF-1. J Gerontol Series A. 2012;67(6):626–39.

LXXII. Sutherland GR, Dix GA, Auer RN. Efect of age in rodent models of focal and forebrain ischemia. Stroke. 1996;27(9):1663–7.

LXXIII. DiNapoli VA, Huber JD, Houser K, Li X, Rosen CL. Early disruptions of the blood–brain barrier may contribute to exacerbated neuronal damage and prolonged functional recovery following stroke in aged rats. Neu robiol Aging. 2008;29(5):753–64.

LXXIV. Tan Z, Li X, Kelly KA, Rosen CL, Huber JD. Plasminogen activator inhibi tor type 1 derived peptide, EEIIMD, diminishes cortical infarct but fails to improve neurological function in aged rats following middle cerebral artery occlusion. Brain Res. 2009;1281:84–90.

LXXV. Bake S, Selvamani A, Cherry J, Sohrabji F. Blood brain barrier and neuro infammation are critical targets of IGF-1-mediated neuroprotection in stroke for middle-aged female rats. PloS ONE. 2014;9(3):e91427.

LXXVI. Yan H, Mitschelen M, Toth P, Ashpole NM, Farley JA, Hodges EL, et al. Endothelin-1-induced focal cerebral ischemia in the growth

LXXVII. Hormone/IGF-1 defcient Lewis Dwarf rat. J Gerontol Series A. 2014;69(11):1353–62.

LXXVIII. Pirger Z, Naskar S, László Z, Kemenes G, Reglődi D, Kemenes I. Reversal of age-related learning defciency by the vertebrate PACAP and IGF-1 in a novel invertebrate model of aging: the pond snail (Lymnaea stagna lis). J Gerontol Series A. 2014;69(11):1331–8.

LXXIX. Deak F, Sonntag WE. Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J Gerontol Series A. 2012;67(6):611–25.

LXXX. Bailey-Downs LC, Sosnowska D, Toth P, Mitschelen M, Gautam T,Henthorn JC, et al. Growth hormone and IGF-1 defciency exacerbate

LXXXI. High-fat diet-induced endothelial impairment in obese lewis dwarf rats: implications for vascular aging. J Gerontol Series A. 2012;67(6):553–64.

LXXXII. Milman S, Atzmon G, Hufman DM, Wan J, Crandall JP, Cohen P, ET allow insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014; 13(4):769–71.

LXXXIII. Nakajima S, Ohsawa I, Ohta S, Ohno M, Mikami T. Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice. Behav Brain Res. 2010; 211(2):178–84.

LXXXIV. Raimundo, N.; Krisko, A. Cross-organelle communication at the core of longevity. Aging 2018, 10, 15–16.

LXXXV. 8Scheibye-Knudsen, M.; Fang, E.F.; Croteau, D.L.; Wilson, D.M., 3rd; Bohr, V.A. Protecting the mitochondrial powerhouse. Trends Cell Biol. 2015, 25, 158–170. [CrossRef] [PubMed]

LXXXVI. Díaz-Villanueva, J.F.; Díaz-Molina, R.; García-González, V. Protein Folding and Mechanisms of Proteostasis. Int. J. Mol. Sci. 2015, 16, 17193–17230.

LXXXVII. Fedarko, N.S. The Biology of Aging and Frailty. Clin. Geriatr. Med. 2011, 27, 27–37.

LXXXVIII. Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217.

LXXXIX. T.B. Kirkwood, A. Kowald, Network theory of aging, Exp. Gerontol. 32 (1997) 395–399.

XC. T.B. Kirkwood, Understanding the odd science of aging, Cell 120 (2005) 437–447.

XCI. .C. Soti, P. Csermely, Aging cellular networks: chaperones as major participants, Exp. Gerontol. 42 (2007) 113–119.

XCII. Bossy-Wetzel, E., Schwarzenbacher, R., Lipton, S.A., 2004. Molecular pathways to neurodegeneration. Nat. Med. 10 (Suppl.), S2–S9.

XCIII. Sau, D., Rusmini, P., Crippa, V., Onesto, E., Bolzoni, E., Ratti, A., Poletti, A., 2011. Dysregulation of axonal transport and motorneuron diseases. Biol. Cell. 103, 87–107.

XCIV. Trifunovic A, Larsson NG (2008) mitochondrial dysfunction as a cause of ageing. J Intern Med 263:167–178

XCV. Ren J, Pulakat L, Whaley-Connell A, Sowers JR (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 88:993–1001