Vascular Endothelial Growth Factor (VEGF) and Its Role in the Progression and Development of Breast Tumor
Main Article Content
Abstract
Breast cancer is the most common type of cancer in women and is widely known. Angiogenesis is the process through which new blood vessels develop from the body's current vascular system. It is essential for tumor growth, invasiveness, and metastasis, and so plays a pivotal role in the development of carcinoma. Proteolytic and proangiogenic catalyst activators and inhibitors regulate angiogenesis in a hierarchical fashion. The angiogenic process is largely under the direction of VEGF. In a select number of malignant tumors, the VEGF gene is overexpressed. The function of VEGF in angiogenesis has been the subject of intensive study in recent years. In breast cancer patients, VEGF plasma levels are highly predictive of tumor growth and survival. Several VEGF gene polymorphisms, have been identified to affect gene expression level in prior investigations. Epidemiological studies have linked polymorphisms in the VEGF gene to altered cancer risk, tumor growth, and metastasis. Previous research on VEGF polymorphism to evaluate the association between genes and breast cancer susceptibility was scant. The current review discusses the role of VEGF in the progression of breast cancer in addition to its promising usage as a predictive marker for breast cancer.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences. 2020;77:1745-70.
II. Geindreau M, Ghiringhelli F, Bruchard M. Vascular endothelial growth factor, a key modulator of the anti-tumor immune response. International Journal of Molecular Sciences. 2021;22(9):4871.
III. Matsumoto G, Hirohata R, Hayashi K, Sugimoto Y, Kotani E, Shimabukuro J, et al. Control of angiogenesis by VEGF and endostatin-encapsulated protein microcrystals and inhibition of tumor angiogenesis. Biomaterials. 2014;35(4):1326-33.
IV. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. International journal of molecular sciences. 2018;19(4):1264.
V. Masłowska K, Halik PK, Tymecka D, Misicka A, Gniazdowska E. The Role of VEGF receptors as molecular target in nuclear medicine for cancer diagnosis and combination therapy. Cancers. 2021;13(5):1072.
VI. Wang X, Bove AM, Simone G, Ma B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front Cell Dev Biol. 2020;8:599281.
VII. Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BioMed research international. 2014;2014.
VIII. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438(7070):967-74.
IX. Shaik F, Cuthbert GA, Homer-Vanniasinkam S, Muench SP, Ponnambalam S, Harrison MA. Structural basis for vascular endothelial growth factor receptor activation and implications for disease therapy. Biomolecules. 2020;10(12):1673.
X. White AL, Bix GJ. VEGFA Isoforms as Pro-Angiogenic Therapeutics for Cerebrovascular Diseases. Biomolecules. 2023;13(4):702.
XI. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. Journal of cell science. 2001;114(5):853-65.
XII. Guo X, Yi H, Li TC, Wang Y, Wang H, Chen X. Role of vascular endothelial growth factor (VEGF) in human embryo implantation: clinical implications. Biomolecules. 2021;11(2):253.
XIII. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-67.
XIV. Al Kawas H, Saaid I, Jank P, Westhoff CC, Denkert C, Pross T, et al. How VEGF-A and its splice variants affect breast cancer development–clinical implications. Cellular Oncology. 2022;45(2):227-39.
XV. Ganta VC, Choi M, Kutateladze A, Annex BH. VEGF165b modulates endothelial VEGFR1–STAT3 signaling pathway and angiogenesis in human and experimental peripheral arterial disease. Circulation research. 2017;120(2):282-95.
XVI. Maloney JP, Gao L. Proinflammatory cytokines increase vascular endothelial growth factor expression in alveolar epithelial cells. Mediators of inflammation. 2015;2015.
XVII. Nascimento C, Gameiro A, Ferreira J, Correia J, Ferreira F. Diagnostic value of VEGF-A, VEGFR-1 and VEGFR-2 in feline mammary carcinoma. Cancers. 2021;13(1):117.
XVIII. Vintonenko N, Pelaez-Garavito I, Buteau-Lozano H, Toullec A, Lidereau R, Perret GY, et al. Overexpression of VEGF189 in breast cancer cells induces apoptosis via NRP1 under stress conditions. Cell Adhesion & Migration. 2011;5(4):332-43.
XIX. Khodabakhsh F, Merikhian P, Eisavand MR, Farahmand L. Crosstalk between MUC1 and VEGF in angiogenesis and metastasis: a review highlighting roles of the MUC1 with an emphasis on metastatic and angiogenic signaling. Cancer Cell International. 2021;21:1-11.
XX. Perrot-Applanat M, Di Benedetto M. Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell adhesion & migration. 2012;6(6):547-53.
XXI. Arcondéguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic acids research. 2013;41(17):7997-8010.
XXII. Cammas A, Dubrac A, Morel B, Lamaa A, Touriol C, Teulade-Fichou M-P, et al. Stabilization of the G-quadruplex at the VEGF IRES represses cap-independent translation. RNA biology. 2015;12(3):320-9.
XXIII. Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013;57(2):840-7.
XXIV. Cai H-K, Chen X, Tang Y-H, Deng Y-C. MicroRNA-194 modulates epithelial–mesenchymal transition in human colorectal cancer metastasis. OncoTargets and therapy. 2017;10:1269.
XXV. Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y, et al. Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget. 2017;8(5):8162.
XXVI. Zhang X, Tang J, Zhi X, Xie K, Wang W, Li Z, et al. miR-874 functions as a tumor suppressor by inhibiting angiogenesis through STAT3/VEGF-A pathway in gastric cancer. Oncotarget. 2015;6(3):1605.
XXVII. Al Balawi IA, Mir R, Abu-Duhier F. Potential impact of vascular endothelial growth factor gene variation (-2578C> A) on breast cancer susceptibility in Saudi Arabia: a Case-Control Study. Asian Pacific journal of cancer prevention: APJCP. 2018;19(4):1135.
XXVIII. Howard EM, Lau SK, Lyles RH, Birdsong GG, Tadros TS, Umbreit JN, et al. Correlation and expression of p53, HER-2, vascular endothelial growth factor (VEGF), and e-cadherin in a high-risk breast-cancer population. International journal of clinical oncology. 2004;9:154-60.
XXIX. Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug delivery and translational research. 2018;8:1483-507.
XXX. Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. Journal of Hematology & Oncology. 2022;15(1):121.
XXXI. Będkowska GE, Gacuta E, Zbucka-Krętowska M, Ławicki P, Szmitkowski M, Lemancewicz A, et al. Plasma Levels and Diagnostic Utility of VEGF in a Three-Year Follow-Up of Patients with Breast Cancer. J Clin Med. 2021;10(22).
XXXII. Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. European Journal of Pharmacology. 2023;949:175586.
XXXIII. Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell Oncol (Dordr). 2021;44(4):715-37.
XXXIV. Sambyal V, Guleria K, Kapahi R, Manjari M, Sudan M, Uppal MS, et al. Association of VEGF haplotypes with breast cancer risk in North-West Indians. BMC Medical Genomics. 2021;14(1):209.
XXXV. Al Kawas H, Saaid I, Jank P, Westhoff CC, Denkert C, Pross T, et al. How VEGF-A and its splice variants affect breast cancer development – clinical implications. Cellular Oncology. 2022;45(2):227-39.
XXXVI. Ayoub NM, Jaradat SK, Al-Shami KM, Alkhalifa AE. Targeting angiogenesis in breast cancer: Current evidence and future perspectives of novel anti-angiogenic approaches. Frontiers in Pharmacology. 2022;13.
XXXVII. Fujii T, Hirakata T, Kurozumi S, Tokuda S, Nakazawa Y, Obayashi S, et al. VEGF-A is associated with the degree of TILs and PD-L1 expression in primary breast cancer. in vivo. 2020;34(5):2641-6.
XXXVIII. Al-Mohaya MA, Alfadhel AK, Mustafa M, Alquwayz TS, Al-Anazi MA. Vascular endothelial growth factor (VEGF-2578 C > A) gene polymorphism as a genetic biomarker for breast cancer: A case control study. Gene Reports. 2021;22:101007.
XXXIX. Maiborodin I, Mansurova A, Chernyavskiy A, Romanov A, Voitcitctkii V, Kedrova A, et al. Cancer Angiogenesis and Opportunity of Influence on Tumor by Changing Vascularization. Journal of Personalized Medicine. 2022;12(3):327.
XL. Oliveira-Ferrer L, Milde-Langosch K, Eylmann K, Rossberg M, Müller V, Schmalfeldt B, et al. Mechanisms of tumor-lymphatic interactions in invasive breast and prostate carcinoma. International Journal of Molecular Sciences. 2020;21(2):602.
XLI. Brogowska KK, Zajkowska M, Mroczko B. Vascular Endothelial Growth Factor Ligands and Receptors in Breast Cancer. Journal of Clinical Medicine. 2023;12(6):2412.
XLII. Saetan N, Honsawek S, Tanavalee A, Ngarmukos S, Yuktanandana P, Poovorawan Y. Association between Common Variants in VEGFA Gene and the Susceptibility of Primary Knee Osteoarthritis. Cartilage. 2022;13(4):66-76.
XLIII. Rezaei M, Hashemi M, Sanaei S, Mashhadi MA, Taheri M. Association between vascular endothelial growth factor gene polymorphisms with breast cancer risk in an Iranian population. Breast cancer: basic and clinical research. 2016;10:BCBCR. S39649.
XLIV. Schneider BP, Shen F, Miller KD. Pharmacogenetic biomarkers for the prediction of response to antiangiogenic treatment. The lancet oncology. 2012;13(10):e427-e36.
XLV. Ruggiero D, Dalmasso C, Nutile T, Sorice R, Dionisi L, Aversano M, et al. Genetics of VEGF serum variation in human isolated populations of cilento: importance of VEGF polymorphisms. PLoS One. 2011;6(2):e16982.
XLVI. Almawi WY, Saldanha FL, Mahmood NA, Al-Zaman I, Sater MS, Mustafa FE. Relationship between VEGFA polymorphisms and serum VEGF protein levels and recurrent spontaneous miscarriage. Human Reproduction. 2013;28(10):2628-35.
XLVII. Hein A, Lambrechts D, Von Minckwitz G, Häberle L, Eidtmann H, Tesch H, et al. Genetic variants in VEGF pathway genes in neoadjuvant breast cancer patients receiving bevacizumab: Results from the randomized phase III G epar Q uinto study. International journal of cancer. 2015;137(12):2981-8.