The Role of Bromelain and Papain Proteolytic Potential Binding to Crystalline P23T Γd Protein in Congenital Cataracts

Main Article Content

Nugraha Wahyu Cahyana

Abstract

Background: Congenital cataracts can cause permanent vision loss. The etiology of congenital cataracts varies widely. The exact etiology can’t be identified, but usually there an autosomal dominant inheritance.


Objective: To assess the proteolytic potential of Bromelain and Papain enzymes against Crystalline P23T γD.


Methods: This study is a pre-experimental study with a computer-based one shot case study approach. Papain enzyme data using 9PAP code and bromelain enzyme data using 1BI6 were obtained from the National Center of Biotechnology Information database (NCBI: www.ncbi.nlm.nih.gov/). Assessment of the  proteolytic potential of Bromelain and Papain enzymes against Crystalline P23T D data using  2KFB code cluspro


 www.cluspro.bu.edu/home.php and data analysis.


Results: The binding affinity of bromelain is -735.1 KCal/Mol and papain is -730.4 KCal/Mol. Conclusion: The bromelain enzyme has a lower binding affinity value than the papain enzyme, so it has the ability to form stable bond to the crystalline P23T D protein better than papain enzyme.

Article Details

How to Cite
Nugraha Wahyu Cahyana. (2024). The Role of Bromelain and Papain Proteolytic Potential Binding to Crystalline P23T Γd Protein in Congenital Cataracts . International Journal of Pharmaceutical and Bio Medical Science, 4(4), 259–263. https://doi.org/10.47191/ijpbms/v4-i4-01
Section
Articles

References

I. Rajavi Z, Sabbaghi, H. Congenital cataract screening. JOpthalmic Vis Ris. 2016; 11(3):310-312. doi: 10.4103/2008-322X.188389

II. Chan WH, Biswas S, Ashworth JL. Congenital and infantile cataract: aetiology and management. Eur J Pediatr. 2012; 171: 625-630.

DOI: 10.1007/s00431-012-1700-1

III. Rajavi Z, Sara M, Sabbaghi H, Yaseri M. Long-term visual outcome of congenital cataract at a Tertiary Refferal Center from 2004 to 2014. Journal of Current Ophthalmology. 2019; 27: 103-109.

doi: 10.1016/j.joco.2015.11.001

IV. Sreelakshmi V,Abraham A.Age Related or Senile Cataract: Pathology, Mechanism and Management. Austin J Clin Ophthalmol. 2016; 3(2):1067.

V. Katarak: Klasifikasi, tatalaksana dan komplikasi operasi

VI. Chakrabarti A. Posterior capsular rent: Genesis and management. Posterior Capsul Rent Genes Manag. 2017; 1–279. DOI: 10.4103/ijo.IJO_1057_17

VII. Hejtmancik JF, Shiels A. Overview of the Lens. Progress in molecular biology and translational science. 2015; 134:119–127.

doi: 10.1016/bs.pmbts.2015.04.006

VIII. 8. Wistow G. The human crystalline gene families. Human genomics. 2012; 6(1): 26. doi: 10.1186/1479-7364-6-26

IX. Slingsby C, Wistow G. Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. Progress in biophysics and molecular biology, 2014; 115(1): 52–67.

DOI: 10.1016/j.pbiomolbio.2014.02.006

X. American Academy of Ophthalmology (AAO). Section 6: Pediatric Ophtalmology And Strabismus: Basic And Clinical Science Course. San Fransisco: American Academy of Ophtalmology. 2019.

XI. Boatz JC, Matthew JW, Mingyue L, Angela MG, Patrick CA. Cataract-associated P23T γD-crystalline retains a native-like fold in amorphous-looking anggregates formed at physiological PH. Nature Communication. 2017; 8: 15137.

DOI: 10.1038/ncomms15137

XII. Chasemzadeh A, Hawa Z, Asmah R. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia Young Ginger (Zingiber officinale Roscoe). Molecules. 2010; 15: 4324-4333. doi: 10.3390/molecules15064324

XIII. Mahboubi M. Zingiber officiale Rosc. Essential oil, a review on its composition bioactivity. Clinical Phytosience. 2019; 5(6): 1-12. DOI : 10.1186/s40816-018-0097-4

XIV. Nafi A, Ling FH, Bakar J, Ghazali H. Partial characterization of an enzymatic extract from Bentong Ginger (Gingiber officinale var. Bentong). Molecules. 2014; 19: 12336- 12348. doi: 10.3390/molecules190812336

XV. Chikhale H, Nerkar A. Review on In-silico techniques an approach to Drug discovery. 2020.

XVI. Laily AN,Khoiri AN. Identifikasi senyawa antidiabetes secara in silico pada carica pubescens. El-Hayah. 2016; 5(4):135. DOI: https://doi.org/10.18860/elha.v5i4.3469

XVII. Jung J, Byeon IL, Wang Y, King J, Gronenborn AM. The structure of the cataract causing P23T mutant of human γD-crystallin exhibits distinctive local conformation and dynamic changes. 2009; 48: 2597-2609. doi: 10.1021/bi802292q

XVIII. Yunta MJ. Docking and Ligand Binding Affinity: Uses and Pitfalls. Medicinal Chemistry Modelling. 2016. doi: 10.12691/ajmo-4-3-2

XIX. 19. Bogsan, C. S. & Todorov, S. D., 2018. Tropical Fruit From Cultivation to Consumption and Health Benefits, Pineapple.. New York: Nove Science Publisher.Budiono, S. 2013. Buku Ajar Ilmu Kesehatan Mata. Surabaya: Airlangga University Press.Deng H, Jia Y, Zhang Y. Protein structure prediction. Int J Mod Phys B. 2020; 32(18): 1840009.

XX. Takeuchi, Masaru, Shieh, Po-Chuen, Horng, and Chi-Ting. Treatment of Symptomatic Vitreous Opacities with Pharmacologic Vitreolysis Using a Mixure of Bromelain, Papain and Ficin Supplement. Applied Sciences. 2020.

DOI: https://doi.org/10.3390/app10175901

XXI. Jong-Anurakkun N. 2007. A-Glucosidase Inhibitors from Devil Tree (Alstonia scholaris). Food Chemistry 103: 1319-1323. doi:10.1016/j.foodchem.2006.10.043 22. Ha, M., Bekhit, A. E.-D. A., Carne, A. & Hopkins, D. L. 2012. Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chemistry. 134: 95-105. DOI: 10.1016/j.foodchem.2012.02.071