Correlation of Selenium Level, Malondialdehyde (MDA) and Total antioxidant Status (TAS), with Thyroid Hormones in Hypothyroidism Women

Main Article Content

Rusul Mushtaq
Hussein Jasim Al-Harbi
Walaa Salih Hassan

Abstract

Background and objective: The thyroid gland and its hormones are crucial for the development of the body's organs as well as the balanced regulation of the body's fundamental physiological processes and . One of the most prevalent thyroid conditions in adults is hypothyroidism, often known as myxedema. The study's objective was to discover thyroid hormones in women with hypothyroidism, including selenium levels, malondialdehyde (MDA), and total antioxidant status (TAS), since these indicators may suggest thyroid health.


Materials and Methods: In this case-control research, which comprised 70 hypothyroid women and 30 controls who appeared to be in good health, the participants' ages varied from 20 to over 40. People who attended the laboratory at Imam Al-Sadiq Hospital and Merjan General Hospital were selected as hypothyroid patients.The serum concentrations Selenium Levels, Malondialdehyde (MDA) and Total antioxidant Status (TAS), total triiodothyronine (T3), total thyroxin (T4), thyroid stimulating hormones (TSH), were measured in 100 samples, mini-vidas were employed for T3,T4,TSH measurment. while Electrofluorescence immunoassay was used to measure the , Malondialdehyde (MDA) and Total antioxidant Status (TAS), levels Selenium  and  concentration


Results : TSH levels 22.73 nmol/L were significantly higher (P < 0.05) in hypothyroid patients compared to controls 1.77 nmol/L, while levels of T3 1.41 nmol/L and T4 55.22 nmol/L were significantly lower (P < 0.05). In hypothyroid patients compared with the control group 2.08 nmol/L, 81.81 nmol/L respectively while malondialdehyde (MDA) levels were 35.16±2.2 (ng/ml ) Significantly higher ≤0.0001) in women with hypothyroidism and total antioxidant status (TAO) 175.07±3.8 (mg AAAE/ml) There was a significant reduction in Total antioxidant status as well as selenium concentration was 12.14±0.9 (ng/ml) (P < 0.011) among women with hypothyroidism and healthy women, respectively.


Conclusion: People with hypothyroidism who are potentially at risk for thyroid problems may be better detected in women who have lower selenium levels and total antioxidant status with significantly higher malondialdehyde (MDA) levels

Article Details

How to Cite
Rusul Mushtaq, Hussein Jasim Al-Harbi, & Walaa Salih Hassan. (2023). Correlation of Selenium Level, Malondialdehyde (MDA) and Total antioxidant Status (TAS), with Thyroid Hormones in Hypothyroidism Women. International Journal of Pharmaceutical and Bio Medical Science, 3(10), 557–567. https://doi.org/10.47191/ijpbms/v3-i10-10
Section
Articles

References

I. Luo, J.; Wang, X.; Yuan, L.; Guo, L. (2021). Iron Deficiency, a Risk Factor of Thyroid Disorders in Reproductive-Age and Pregnant Women: A Systematic Review and Meta-Analysis. Front. Endocrinol .

II. Vanderpump MP, Turnbridge WM. Epidemiology and prevention of clinical and subclinical hypothyroidism. Thyroid 2002; 12:839-47.

III. M. Helfand, “Screening for subclinical thyroid dysfunction in nonpregnant adults: a summary of the evidence for the U.S. preventive services task force,” Annals of Internal Medicine, vol. 140, no. 2, pp. 128–141, 2004.

IV. Shahid, M.A., Ashraf, M.A., & Sharma, S. (2018). Physiology, thyroid hormone 4-

V. Benvenga, S.; Nordio, M.; Laganà, A.S.; Unfer, V.( 2021). The Role of Inositol in Thyroid Physiology and in Subclinical Hypothyroidism Management. Front. Endocrinol., 12, 662582.

VI. Köhrle, J. Selenium in Endocrinology-Selenoprotein-Related Diseases, Population Studies, and Epidemiological Evidence. Endocrinology 2021, 162, bqaa228

VII. Schomburg, L. (2020). The other view: The trace element selenium as a micronutrient in thyroid disease, diabetes, and beyond. Hormones, 19, 15–24.

VIII. Ameziane-El-Hassani, R.; Schlumberger, M.; Dupuy, C. NADPH Oxidases: New Actors in Thyroid Cancer? Nat. Rev. Endocrinol. 2016, 12, 485–494.

IX. Pace, C.; Tumino, D.; Russo, M.; Le Moli, R.; Naselli, A.; Borzì, G.; Malandrino, P.; Frasca, F.( 2020,). Role of Selenium and Myo-Inositol Supplementation on Autoimmune Thyroiditis Progression. Endocr. J. 67, 1093–1098.

X. Oziol, L., Faure, P., Bertrand, N. et al. (2003) Inhibition of vitro macrophage induced low density lipoprotein oxidation by thyroid compounds. Journal of Endocrinology, 177, 137–146.

XI. Ohye, H.; Sugawara, M. Dual Oxidase, Hydrogen Peroxide and Thyroid Diseases. Exp. Biol. Med. Maywood NJ 2010, 235, 424–433.

XII. Kumari, S. N., Sandhya, G. K., & Gowda, K. (2011). Oxidative stress in hypo and hyperthyroidism. Al Ameen J Med Sci, 4(1), 49-53

XIII. Prashant, T. ; Nivedita S.;, Manish, K. V. and Anand N.(2019). Association of Vitamin B12, Folate and Ferritin with Thyroid Hormones in Hypothyroidism. Annals of International Medical and Dental Research, Vol 5,pp,1-5

XIV. Hadlow 8- Hadlow NC, Rothacker KM, Wardrop R, Brown SJ, Lim EM, Walsh JP. The relationship between TSH and free T 4 in a large population is complex and nonlinear and differs by age and sex. J Clin Endocrinol Metab. 2013;98:2936–

XV. Cooper D.S., Ladenson P.W.The thyroid gland. Gardner D.G., Shoback D.. Greenspan’s basic & clinical endocrinology10th ed.. New York: McGraw-Hill, 2018.

XVI. Aggarwal, N., & Razvi, S. (2013). Thyroid and aging or the aging thyroid? An evidence-based analysis of the literature. Journal of thyroid research, 2013.‏

XVII. Carlé A, Pedersen IB, Knudsen N, Perrild H, Ovesen L, Andersen S, et al. Hypothyroid symptoms fail to predict thyroid insufficiency in old people: a population-based case-control study. Am J Med. 2016;129:1082–92.

XVIII. Dijck-Brouwer, D. J., Muskiet, F. A., Verheesen, R. H., Schaafsma, G Schaafsma, A., & Geurts, J. M. (2022). Thyroidal and extrathyroidal requirements for iodine and selenium: A combined evolutionary and (Patho) Physiological approach. Nutrients, 14(19), 3886.

XIX. Mao, J., Pop, V. J., Bath, S. C., Vader, H. L., Redman, C. W., & Rayman, M. P. (2016). Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency. European journal of nutrition, 55, 55-61

XX. Ferrari, S. M., Ragusa, F., Elia, G., Paparo, S. R., Mazzi, V., Baldini, E.,. & Fallahi, P. (2021). Precision medicine in autoimmune thyroiditis and hypothyroidism. Frontiers in pharmacology, 12, 750380

XXI. Duntas, L. H. (2010). Selenium and the thyroid: a close-knit connection. The Journal of Clinical Endocrinology & Metabolism, 95(12), 5180-5188.

XXII. Rayman, M. P. (2012). Selenium and human health. Lancet, 379(9822), 1256-1268.‏

XXIII. Rotondo Dottore, G., Leo, M., Casini, G., Latrofa, F., Cestari, L. Sellari-Franceschini, S., ... & Marinò, M. (2017). Antioxidant actions of selenium in orbital fibroblasts: a basis for the effects of selenium in Graves’ orbitopathy. Thyroid, 27(2), 271-278.

XXIV. Spallholz , J. E., Boylan, L. M., & Larsen, H. S. (1990). Advances in understanding selenium's role in the immune system. Annals of the New York Academy of Sciences, 587(1), 123-139.

XXV. Taylor , E. W. (1995). Selenium and cellular immunity: Evidence that selenoproteins may be encoded in the+ 1 reading frame overlapping the human CD4, CD8, and HLA-DR genes. Biological trace element research, 49, 85-95.

XXVI. Hu, Y., Feng, W., Chen, H., Shi, H., Jiang, L., Zheng, X., ... & Cui, D. (2021). Effect of selenium on thyroid autoimmunity and regulatory T cells in patients with Hashimoto’s thyroiditis: a prospective randomized‐controlled trial. Clinical and translational science, 14(4), 1390-1402.

XXVII. Kryczyk-Kozioł, J., Prochownik, E., Błażewska-Gruszczyk, A., Słowiaczek, M., Sun, Q., Schomburg, L., ... & Zagrodzki, P. (2022). Assessment of the effect of selenium supplementation on production of selected cytokines in women with hashimoto’s thyroiditis. Nutrients, 14(14), 2869.

XXVIII. Minich, W. B. (2022). Selenium metabolism and biosynthesis of selenoproteins in the human body. Biochemistry (Moscow), 87(Suppl 1), S168-S177.‏

XXIX. Stathatos N, Daniels GH. Franco JS, Amaya AJ, . & Anaya J (2012). Autoimmune thyroid disease. Curr Opin Rheumatol.24(1):70–5. 4.

XXX. G. Hollowell, N.W. Staehling, W.D. Flanders, W.H. Hannon, E.W. Gunter, C.A. Spencer, L.E. & Braverman, (2002) . Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994):national health and nutrition examination survey (NHANES III), J. Clin. Endocrinol. Metab.,87,489–499

XXXI. Hariharan, S., & Dharmaraj, S. (2020).Selenium and selenoproteins: It’srole in regulation of inflammation. Inflammopharmacology, 28, 667-695.

XXXII. Gape, A.; Strom, D.; Brigilius Floh, R. Schomburg, L.; Bechtold, A.; Leschik Bonnet, E.; Hesker. (2015), German Nutrition Society (DGE). Revised reference values for selenium intake. J. Elim Trace. middle. Biol 32, 195-199.

XXXIII. Wichman, J., Winther, K. H., Bonnema, S. J., & Hegedüs, L. (2016) Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: a systematic review and meta-analysis. Thyroid, 26(12), 1681-1692.‏

XXXIV. Winther, K. H., Rayman, M. P., Bonnema, S. J., & Hegedüs, L. (2020). Selenium in thyroid disorders—essential knowledge for clinicians. Nature Reviews Endocrinology, 16(3), 165-176

XXXV. Ray, P. D., Huang, B.W, and Tsuji, Y. (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal., 24, 981-990.

XXXVI. Resch U, Helsel G, Tatzber F, Sinzinger H. Antioxidant status in thyroid dysfunction. Clin Chem Lab Med 2002;40:1132‑4.

XXXVII. Pace, C.; Tumino, D.; Russo, M.; Le Moli, R.; Naselli, A.; Borzì, G.; Malandrino, P.; Frasca, F.( 2020,). Role of Selenium and MyoInositol Supplementation on Autoimmune Thyroiditis Progression. Endocr. J. 67, 1093–1098.

XXXVIII. Thanas, C., Ziros, P. G., Chartoumpekis, D. V., Renaud, C. O., & Sykiotis, G. P. (2020). The Keap1/Nrf2 signaling pathway in the thyroid—2020 update. Antioxidants, 9(11), 1082.

XXXIX. Szanto, I., Pusztaszeri, M., & Mavromati, M. (2019). H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants, 8(5), 126

XL. Wang, B., Wang, Y., Zhang, J., Hu, C., Jiang, J., Li, Y., & Peng, Z (2023). ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Archives of Toxicology, 1-13.

XLI. Kander, M. C., Cui, Y., & Liu, Z. (2017). Gender difference in oxidative stress: a new look at the mechanisms of cardiovascular diseases. Journal of cellular and molecular medicine, 21(5), 1024-1032.

XLII. Chakrabarti, S.K.; Ghosh, S.; Banerjee, S.; Mukherjee,S.& Chowdhury, (2016).S. Oxidative stress in hypothyroidism patients and its role Antioxidant supplements. Indian J. Endocrinol. tired.20, 674-678.

XLIII. Torun, A. N., Kulaksizoglu, S., Kulaksizoglu, M., Pamuk, B. O., Isbilen, E., & Tutuncu, N. B. (2009). Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clinical endocrinology, 70(3), 469-474

XLIV. Ohye, H., & Sugawara, M. (2010). Dual oxidase, hydrogen peroxide and thyroid diseases. Experimental biology and medicine, 235(4), 424-433.‏

XLV. Mogulkoc, R., Baltaci, A. K., Oztekin, E., Ozturk, A., & Sivrikaya, A (2005). Short-term thyroxine administration leads to lipid peroxidation in renal and testicular tissues of rats with hypothyroidism. Acta Biologica Hungarica, 56(3-4), 225-232.‏

XLVI. Roshangar, E.; Modaresi,M. & Toghyani,M.(2014). Effect of marshmallow's root extract on thyroid hormones in Broilers. Res. J. App. Sci. Eng. Technol., 7(1): 161-164.

XLVII. Bjoro, J.; Kruger, O. & Midthjell, K. (2000).Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in large unselected population .Eur. J. Endocrinol., 143(5):39-74.