Haemoglobinopathies: Prevention, Diagnosis, Treatment and Management in Sub-Saharan Africa
Main Article Content
Abstract
Hemoglobinopathies are a hereditary group of diseases that are characterized by qualitative changes in hemoglobin (sickle red blood cells) and quantitative changes in hemoglobin (thalassemia). Originally described in subtropical Africa, they are now found all over the world due to migration. Because of the limited available resources for the disease's care and prevention, their high frequency and clinical severity make them a serious public health burden, particularly in Africa. Sickle cell and thalassemia are categorized based on the specific defect in globin chains that are ineffectively produced. Developing nations like sub-Saharan Africa are faced with economic challenges, particularly, where problems are primarily caused by social and cultural backgrounds, along with the coexistence of infection and malnutrition, Therapeutic approaches and follow-up still pose challenges in these situations. Several European nations affected by hemoglobinopathies have successfully implemented an effective therapeutic regime, which is still lacking in sub-Saharan Africa. The aim of this review paper is to establish the current advanced techniques used for the treatment, prevention, diagnostic, and management of hemoglobinopathies and to ameliorate the burden of hemoglobinopathy in sub-Saharan Africa in the present and future.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Agarwal, A. (2021). CLINICAL PROFILE AND MID-TERM OUTCOME OF CHILDREN WITH SICKLE CELL DISEASE TREATED WITH HYDROXYUREA. PARIPEX INDIAN JOURNAL OF RESEARCH, pp.16–18. doi:https://doi.org/10.36106/paripex/8900707.
II. Andreani, M., Testi, M., Gaziev, J., Condello, R., Bontadini, A., Tazzari, P.L., Ricci, F., De Felice, L., Agostini, F., Fraboni, D., Ferrari, G., Battarra, M., Troiano, M., Sodani, P. and Lucarelli, G. (2010). Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease. Haematologica, 96(1), pp.128–133. doi:https://doi.org/10.3324/haematol.2010.031013.
III. Ansong, D., Osei-Akoto, A., Ocloo, D. and Ohene-Frempong, K.O.-F. (2013). Sickle Cell Disease: Management options and challenges in developing countries. Mediterranean Journal of Hematology and Infectious Diseases, 5(1), p.e2013062. doi:https://doi.org/10.4084/mjhid.2013.062.
IV. Aygun, B., Tomlinson, G.A., McGann, P.T., Tshilolo, L., Williams, T.N., Olupot-Olupot, P., Santos, B., Stuber, S.E., Lane, A., Latham, T. and Ware, R.E. (2020). Optimizing Hydroxyurea Therapy with Reduced Laboratory Monitoring for Children with Sickle Cell Anemia in Sub-Saharan Africa: The Reach Experience. Blood, 136(Supplement 1), pp.17–17.
doi:https://doi.org/10.1182/blood-2020-134180.
V. Baldwin, K., Urbinati, F., Romero, Z., Campo-Fernandez, B., Kaufman, M.L., Cooper, A.R., Masiuk, K., Hollis, R.P. and Kohn, D.B. (2015). Enrichment of Human Hematopoietic Stem/Progenitor Cells Facilitates Transduction for Stem Cell Gene Therapy. STEM CELLS, 33(5), pp.1532–1542. doi:https://doi.org/10.1002/stem.1957.
VI. Baumann, A.A., Belle, S.H., James, A. and King, A.A. (2018). Specifying sickle cell disease interventions: a study protocol of the Sickle Cell Disease Implementation Consortium (SCDIC). BMC Health Services Research, 18(1). doi:https://doi.org/10.1186/s12913-018-3297-1.
VII. Brown, T.M., Fee, E. and Stepanova, V. (2016). Halfdan Mahler: Architect and Defender of the World Health Organization ‘Health for All by 2000’ Declaration of 1978. American Journal of Public Health, 106(1), pp.38–39.
doi:https://doi.org/10.2105/ajph.2015.302935.
VIII. Buser, J.M. (2017). The Need for Hematology Nurse Education in Low- and Middle-Income Countries: A Community Case Study in Tanzania. Frontiers in Public Health, 5.
doi:https://doi.org/10.3389/fpubh.2017.00065.
IX. DeBaun, M.R., Ghafuri, D.L., Rodeghier, M., Maitra, P., Chaturvedi, S., Kassim, A. and Ataga, K.I. (2019). Decreased median survival of adults with sickle cell disease after adjusting for left truncation bias: a pooled analysis. Blood, [online] 133(6), pp.615–617.
doi:https://doi.org/10.1182/blood-2018-10-880575.
X. Descotes, J. (2002). Preclinical safety evaluation of immunotherapeutics. Toxicology, 174(1), p.1. doi:https://doi.org/10.1016/s0300-483x(02)00050-1.
XI. Esoh, K., Wonkam-Tingang, E. and Wonkam, A. (2021). Sickle cell disease in sub-Saharan Africa: transferable strategies for prevention and care. The Lancet Haematology, 8(10), pp.e744–e755. doi:https://doi.org/10.1016/s2352-3026(21)00191-5.
XII. Esrick, E.B., Manis, J.P., Daley, H., Baricordi, C., Trébéden-Negre, H., Pierciey, F.J., Armant, M., Nikiforow, S., Heeney, M.M., London, W.B., Biasco, L., Asmal, M., Williams, D.A. and Biffi, A. (2018). Successful hematopoietic stem cell mobilization and apheresis collection using plerixafor alone in sickle cell patients. Blood Advances, 2(19), pp.2505–2512.
doi:https://doi.org/10.1182/bloodadvances.2018016725.
XIII. Fitzhugh, C.D., Hsieh, M.M., Bolan, C.D., Saenz, C. and Tisdale, J.F. (2009). Granulocyte colony-stimulating factor (G-CSF) administration in individuals with sickle cell disease: time for a moratorium? Cytotherapy, [online] 11(4), pp.464–471. doi:https://doi.org/10.1080/14653240902849788.
XIV. Forget, B.G. (1998). Molecular basis of hereditary persistence of fetal hemoglobin. Annals of the New York Academy of Sciences, [online] 850, pp.38–44. doi:https://doi.org/10.1111/j.1749-6632.1998.tb10460.x.
XV. Gene Therapy for X Linked Severe Combined Immunodeficiency. (2020). Case Medical Research. doi:https://doi.org/10.31525/ct1-nct04286815.
XVI. Graham, L.M. (2004). Sickle cell disease: Pulmonary management options. Pediatric Pulmonology, 37(S26), pp.191–193. doi:https://doi.org/10.1002/ppul.70102.
XVII. Hsieh, M.M., Kang, E.M., Fitzhugh, C.D., Link, M.B., Bolan, C.D., Kurlander, R., Childs, R.W., Rodgers, G.P., Powell, J.D. and Tisdale, J.F. (2009). Allogeneic Hematopoietic Stem-Cell Transplantation for Sickle Cell Disease. New England Journal of Medicine, 361(24), pp.2309–2317. doi:https://doi.org/10.1056/nejmoa0904971.
XVIII. Karponi, G., Psatha, N., Lederer, C.W., Adair, J.E., Zervou, F., Zogas, N., Kleanthous, M., Tsatalas, C., Anagnostopoulos, A., Sadelain, M., Rivière, I., Stamatoyannopoulos, G. and Yannaki, E. (2015). Plerixafor+G-CSF–mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy. Blood, 126(5), pp.616–619. doi:https://doi.org/10.1182/blood-2015-03-629618.
XIX. Kattamis, A., Kwiatkowski, J.L. and Aydinok, Y. (2022). Thalassaemia. The Lancet, 399(10343), pp.2310–2324. doi:https://doi.org/10.1016/s0140-6736(22)00536-0.
XX. Kunz, J.B. and Kulozik, A.E. (2020). Gene Therapy of the Hemoglobinopathies. HemaSphere, 4(5),p.e479. doi:https://doi.org/10.1097/hs9.000000000000047
XXI. La Nasa, G., Caocci, G., Efficace, F., Dessì, C., Vacca, A., Piras, E., Sanna, M., Marcias, M., Littera, R., Carcassi, C. and Lucarelli, G. (2013). Long-term health-related quality of life evaluated more than 20 years after hematopoietic stem cell transplantation for thalassemia. Blood, 122(13), pp.2262–2270. doi:https://doi.org/10.1182/blood-2013-05-502658.
XXII. Leonard, A., Bonifacino, A., Dominical, V.M., Luo, M., Haro‐Mora, J.J., Demirci, S., Uchida, N., Pierciey, F.J. and Tisdale, J.F. (2019). Bone marrow characterization in sickle cell disease: inflammation and stress erythropoiesis lead to suboptimal CD34 recovery. British Journal of Haematology. doi:https://doi.org/10.1111/bjh.15902.
XXIII. Lidonnici, M.R., Aprile, A., Frittoli, M.C., Mandelli, G., Paleari, Y., Spinelli, A., Gentner, B., Zambelli, M., Parisi, C., Bellio, L., Cassinerio, E., Zanaboni, L., Cappellini, M.D., Ciceri, F., Marktel, S. and Ferrari, G. (2016). Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing capacity compared to plerixafor alone. Haematologica, 102(4), pp.e120–e124.
doi:https://doi.org/10.3324/haematol.2016.154740.
XXIV. Magrin, E., Miccio, A. and Cavazzana, M. (2019). Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood, 134(15), pp.1203–1213.
doi:https://doi.org/10.1182/blood.2019000949.
XXV. Makani, J., Lyimo, M., Magesa, P. and Roberts, D.J. (2017a). Strengthening medical education in haematology and blood transfusion: postgraduate programmes in Tanzania. British Journal of Haematology, 177(6), pp.838–845. doi:https://doi.org/10.1111/bjh.14644.
XXVI. Makani, J., Lyimo, M., Magesa, P. and Roberts, D.J. (2017b). Strengthening medical education in haematology and blood transfusion: postgraduate programmes in Tanzania. British Journal of Haematology, 177(6), pp.838–845.
doi:https://doi.org/10.1111/bjh.14644.
XXVII. Makani, J., Ofori-Acquah, S.F., Nnodu, O., Wonkam, A. and Ohene-Frempong, K. (2013). Sickle Cell Disease: New Opportunities and Challenges in Africa. The Scientific World Journal, [online] 2013, pp.1–16. doi:https://doi.org/10.1155/2013/193252.
XXVIII. Makani, J. and Roberts, D.J. (2016). Hematology in Africa. Hematology/Oncology Clinics of North America, 30(2), pp.457–475.
doi:https://doi.org/10.1016/j.hoc.2015.12.002.
XXIX. Marktel, S., Scaramuzza, S., Cicalese, M.P., Giglio, F., Galimberti, S., Lidonnici, M.R., Calbi, V., Assanelli, A., Bernardo, M.E., Rossi, C., Calabria, A., Milani, R., Gattillo, S., Benedicenti, F., Spinozzi, G., Aprile, A., Bergami, A., Casiraghi, M., Consiglieri, G. and Masera, N. (2019). Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nature Medicine, [online] 25(2), pp.234–241.
doi:https://doi.org/10.1038/s41591-018-0301-6.
XXX. McQuilten, Z.K., Higgins, A.M., Burns, K., Chunilal, S., Dunstan, T., Haysom, H.E., Kaplan, Z., Rushford, K., Saxby, K., Tahiri, R., Waters, N. and Wood, E.M. (2019). The cost of blood: a study of the total cost of red blood cell transfusion in patients with β‐thalassemia using time‐driven activity‐based costing. Transfusion, 59(11), pp.3386–3395. doi:https://doi.org/10.1111/trf.15558.
XXXI. Milone, M.C. and O’Doherty, U. (2018). Clinical use of lentiviral vectors. Leukemia, [online] 32(7), pp.1529–1541. doi:https://doi.org/10.1038/s41375-018-0106-0.
XXXII. Moher, D. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, [online] 151(4), p.264.
doi:https://doi.org/10.7326/0003-4819-151-4-200908180-00135.
XXXIII. Mullan, F. and Frehywot, S. (2007). Non-physician clinicians in 47 sub-Saharan African countries. The Lancet, 370(9605), pp.2158–2163.
doi:https://doi.org/10.1016/s0140-6736(07)60785-5.
XXXIV. Munkongdee, T., Chen, P., Winichagoon, P., Fucharoen, S. and Paiboonsukwong, K. (2020). Update in Laboratory Diagnosis of Thalassemia. Frontiers in Molecular Biosciences, [online] 7, p.74. doi:https://doi.org/10.3389/fmolb.2020.00074.
XXXV. Munn, Z., Moola, S., Lisy, K., Riitano, D. and Tufanaru, C. (2015). Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. International Journal of Evidence-Based Healthcare, 13(3), pp.147–153. doi:https://doi.org/10.1097/xeb.0000000000000054
XXXVI. Odunvbun, M. and Okolo, A. (2015). Implementing Comprehensive Health Care Management for Sickle Cell Disease in an African Setting. Nigerian Journal of Paediatrics, 42(4), p.298. doi:https://doi.org/10.4314/njp.v42i4.3.
XXXVII. Ribeil, J.-A., Hacein-Bey-Abina, S., Payen, E., Magnani, A., Semeraro, M., Magrin, E., Caccavelli, L., Neven, B., Bourget, P., El Nemer, W., Bartolucci, P., Weber, L., Puy, H., Meritet, J.-F., Grevent, D., Beuzard, Y., Chrétien, S., Lefebvre, T., Ross, R.W. and Negre, O. (2017). Gene Therapy in a Patient with Sickle Cell Disease. New England Journal of Medicine, [online] 376(9), pp.848–855. doi:https://doi.org/10.1056/nejmoa1609677.
XXXVIII. Sabath, D.E. (2017). Molecular Diagnosis of Thalassemias and Hemoglobinopathies. American Journal of Clinical Pathology, 148(1), pp.6–15. doi:https://doi.org/10.1093/ajcp/aqx047.
XXXIX. Santarone, S., Pepe, A., Meloni, A., Natale, A., Pistoia, L., Olioso, P., Papalinetti, G., Cuccia, L., Spasiano, A., Lisi, R., Di Ianni, M., Bonfini, T., Accorsi, P., Salvadori, S., Papola, F., Angelini, S. and Di Bartolomeo, P. (2017). Secondary solid cancer following hematopoietic cell transplantation in patients with thalassemia major. Bone Marrow Transplantation, 53(1), pp.39–43.
doi:https://doi.org/10.1038/bmt.2017.214.
XL. Steinberg, M.H., Chui, D.H.K., Dover, G.J., Sebastiani, P. and Alsultan, A. (2014). Fetal hemoglobin in sickle cell anemia: a glass half full? Blood, 123(4), pp.481–485.
doi:https://doi.org/10.1182/blood-2013-09-528067.
XLI. Thompson, A.A., Walters, M.C., Kwiatkowski, J., Rasko, J.E.J., Ribeil, J.-A., Hongeng, S., Magrin, E., Schiller, G.J., Payen, E., Semeraro, M., Moshous, D., Lefrere, F., Puy, H., Bourget, P., Magnani, A., Caccavelli, L., Diana, J.-S., Suarez, F., Monpoux, F. and Brousse, V. (2018). Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. New England Journal of Medicine, 378(16),pp.1479–1493. doi:https://doi.org/10.1056/nejmoa1705342.
XLII. Tluway, F. and Makani, J. (2017). Sickle cell disease in Africa: an overview of the integrated approach to health, research, education and advocacy in Tanzania, 2004-2016. British Journal of Haematology, [online] 177(6), pp.919–929. doi:https://doi.org/10.1111/bjh.14594.
XLIII. Vichinsky, E., Hoppe, C.C., Ataga, K.I., Ware, R.E., Nduba, V., El-Beshlawy, A., Hassab, H., Achebe, M.M., Alkindi, S., Brown, R.C., Diuguid, D.L., Telfer, P., Tsitsikas, D.A., Elghandour, A., Gordeuk, V.R., Kanter, J., Abboud, M.R., Lehrer-Graiwer, J., Tonda, M. and Intondi, A. (2019). A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease. New England Journal of Medicine. doi:https://doi.org/10.1056/nejmoa1903212.
XLIV. WHO (2017). Sickle Cell Disease. [online] WHO | Regional Office for Africa. Available at: https://www.afro.who.int/health-topics/sickle-cell-disease.