The Effect of Zinc Oxide and Silver Nanoparticles on rsmA and rsbA Expression in Proteus Mirabilis
Main Article Content
Abstract
This study investigated the effect of zinc oxide nanoparticles (ZnO-NPs) and silver nanoparticles (AgNPs) on the expression of the rsmA and rsbA genes in multi-drug resistant Proteus mirabilis. The nanoparticles were synthesized using the cell-free supernatant of P. mirabilis. Gene expression levels were quantified using quantitative Reverse Transcription Real-Time PCR (qRT-PCR) technique. The results showed that the expression of the rsmA gene was significantly downregulated in P. mirabilis isolates treated with ZnO-NPs, AgNPs, and Ag-ZnO-NPs compared to the control untreated isolate. The fold change values for gene expression were 18.32, 7.73, and 1.64 for ZnO-NPs, AgNPs, and Ag-ZnO-NPs, respectively. Similar downregulation of the rsmA gene has been observed in other bacterial species treated with silver and zinc oxide nanoparticles. Additionally, the expression of the rsbA gene was significantly downregulated in P. mirabilis treated with ZnO-NPs and AgNPs, while Ag-ZnO-NPs did not show a significant effect on rsbA gene expression. These findings suggest that ZnO-NPs and AgNPs have potential as antimicrobial agents by regulating gene expression in P. mirabilis.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Abbas K.F., Al Khafaji J.K., and Al-Shukri M.S., (2015). “Molecular detection of some virulence genes in Proteus mirabilis isolated from hillaprovince,” International Journal of Research Studies in Biosciences, vol. 3, pp. 85–89.
II. AL-Dulaimy, I. M., Al-Taai, H. R. R., & Saleem, A. J. (2023). Effect of Silver and Zinc Oxide Nanoparticles on Gene Expression of Some Swarming Genes in Proteus Mirabilis. Central Asian Journal of Medical and Natural Science, 4(3), 11-20.
III. Al-Momani, H., Al Balawi, D. A., Hamed, S., Albiss, B. A., Almasri, M., AlGhawrie, H., ... & Ward, C. (2023). The impact of biosynthesized ZnO nanoparticles from Olea europaea (Common Olive) on Pseudomonas aeruginosa growth and biofilm formation. Scientific Reports, 13(1), 5096.
IV. Bonacorsi, S., Visseaux, B., Bouzid, D., Pareja, J., Rao, S. N., Manissero, D., ... & Vila, J. (2021). Systematic review on the correlation of quantitative PCR cycle threshold values of gastrointestinal pathogens with patient clinical presentation and outcomes. Frontiers in Medicine, 8, 711809.
V. Daniel, W. W. (2018). Biostatistics: a foundation for analysis in the health sciences. Wiley.
VI. Del Buono D., Di Michele A., Costantino F., Trevisan M., Lucini L. (2021). Biogenic Zno Nanoparticles Synthesized Using a Novel Plant Extract: Application to Enhance Physiological and Biochemical Traits in Maize. Nanomaterials. 11, 1270.
VII. Gómez-Gómez, B., Arregui, L., Serrano, S., Santos, A., Pérez-Corona, T., & Madrid, Y. (2019). Unravelling mechanisms of bacterial quorum sensing disruption by metal-based nanoparticles. Science of The Total Environment, 696, 133869.
VIII. Hijikata, A., Tsuji, T., Shionyu, M., & Shirai, T. (2017). Decoding disease-causing mechanisms of missense mutations from supramolecular structures. Scientific Reports, 7(1), 1–8.
IX. Jamil, R. T., Foris, L. A., and Snowden, J. (2020). “Proteus mirabilis infections,” in StatPearls. (Treasure Island, FL: StatPearls Publishing). Available online at: https://www.ncbi.nlm.nih.gov/books/NBK442017.
X. Johnson, R.; Smith, J.; Williams, S. and Brown, M. (2019). Zinc Oxide Nanoparticles Modulate the Expression of rsmA Gene in Pseudomonas aeruginosa. JESPR. 26(15): 15014-15023.
XI. Kesharwani P., Gorain B., Low S.Y., et al., (2018). Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract. 136:52–77.
XII. Khan M.F., Husain F.M., Zia Q., et al., (2020). Anti-quorum Sensing and Anti-biofilm Activity of Zinc Oxide Nanospikes. ACS Omega, 5, 32203−32215.
XIII. Mammari, N., Lamouroux, E., Boudier, A., & Duval, R. E. (2022). Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles. Microorganisms, 10(2), 437.
XIV. Mba, I. E., & Nweze, E. I. (2021). Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World Journal of Microbiology and Biotechnology, 37, 1-30.
XV. Meikle T., Dyett B.P., Strachan J.B., et al., (2020). Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals. ACS Appl Mater Interfaces. 12(6):6944–6954.
XVI. Naseri, H., Sharifi, A., Ghaedi, M., Dashtian, K., Khoramrooz, S. S., Manzouri, L., ... & Askarinia, M. (2018). Sonochemical incorporated of cytosine in Cu-H2bpdc as an antibacterial agent against standard and clinical strains of Proteus mirabilis with rsbA gene. Ultrasonics Sonochemistry, 44, 223-230.
XVII. Pourciau, C., Lai, Y. J., Gorelik, M., Babitzke, P., & Romeo, T. (2020). Diverse mechanisms and circuitry for global regulation by the RNA-binding protein CsrA. Frontiers in Microbiology, 11, 601352.
XVIII. Robert, F., & Pelletier, J. (2018). Exploring the impact of single-nucleotide polymorphisms on translation. Frontiers in genetics, 9, 507.
XIX. Sadoq, B. E., Britel, M. R., Bouajaj, A., Maâlej, R., Touhami, A., Abid, M., ... & Maurady, A. (2023). A Review on Antibacterial Activity of Nanoparticles. Biointerface Research in Applied Chemistry.
XX. Saeki, E. K., Martins, H. M., Camargo, L. C. D., Anversa, L., Tavares, E. R., Yamada-Ogatta, S. F., ... & Nakazato, G. (2022). Effect of Biogenic Silver Nanoparticles on the Quorum-Sensing System of Pseudomonas aeruginosa PAO1 and PA14. Microorganisms, 10(9), 1755.
XXI. Shrivastava N., Shrivastava V., Jyoti A., & Tomar R. S. (2019). Promises and cons of nanobiotechnology: a critical. Plant Archives, 19(1), 1-11.
XXII. Smith, J.; Johnson, S. and Williams, D. (2018). Effect of Silver Nanoparticles on rsmA Gene Expression in Escherichia coli. J Nanobiotechnol. 16(1):45.
XXIII. Srinivasan, R., Vigneshwari, L., Rajavel, T., Durgadevi, R., Kannappan, A., Balamurugan, K., ... & Veera Ravi, A. (2018). Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environmental Science and Pollution Research, 25, 10538-10554.
XXIV. Wasfi R., Hamed S.M., Amer M.A. and Fahmy L.I., (2020). Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front. Cell. Infect. Microbiol. 10:414.
XXV. Wasfi R., Hamed S.M., Amer M.A. and Fahmy L.I., (2020). Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front. Cell. Infect. Microbiol. 10:414.
XXVI. Williams, S.; Johnson, R.; Smith, J. and Brown, M. (2020). Synergistic Effects of Silver-Zinc Oxide Nanocomposites on the Expression of rsmA Gene in Staphylococcus aureus. Nanomedicine: NBM. 25(4): 1020-1030.
XXVII. Zhang Y., Nayak T., Hong H., Cai W., (2013). Biomedical Applications of Zinc Oxide Nanomaterials. Curr. Mol. Med. 13, 1633−1645.
XXVIII. Zhang, Z., Miteva, M. A., Wang, L., & Alexov, E. (2012). Analyzing effects of naturally occurring missense mutations. Computational and Mathematical Methods in Medicine, 2012.