Investigation of ROS-Driven Cytotoxic Mechanisms in WO3:Ag Heterostructures Supported on Carbon Against Bladder Cancer

Main Article Content

Bruna Fragelli
Joice Margareth de Almeida Rodolpho
Krissia Frando de Godoy
Laura Ordonho Líbero
Luis Ignácio Granone
Maria Sandra Churio
Ana Claudia Muniz Rennó
Fernanda de Freitas Anibal
Elson Longo
Marcelo Assis

Abstract

Bladder cancer presents a significant health challenge due to its high malignancy and rising incidence rates. Silver-based materials are well-known for their cytotoxic effects on various cell types. This study not only aimed to synthesize and characterize carbon-supported WO3:Ag heterostructures but also to evaluate their biological and physicochemical properties. The material was synthesized through the synergistic thermal decomposition of α-Ag2WO4 dispersed in chitosan, followed by WO3:Ag heterostructure formation on a carbon support, yielding samples with varying α-Ag2WO4 concentrations (SC, SC1, SC2, and SC4, for 0, 10, 20 and 40% of α-Ag2WO4 for chitosan). Characterization confirmed the successful formation of carbon-supported heterostructures with controlled ionic release and enhanced ROS generation.  In vitro assays were conducted to assess the viability of non-tumor (3T3 fibroblasts) and tumor (bladder carcinoma MB49) cells using MTT salt and neutral red dye. Additional analyses included autophagy detection by correlating data from viability assays, nitric oxide and ROS quantification using the Griess reaction and fluorescent probes, and Caspase-3 activity measured with a fluorescent antibody. The results indicated that SC1 and SC2 samples were more effective against both cell types, with SC2 showing heightened effectiveness against the tumor lineage by inducing greater oxidative stress in MB49 cells compared to 3T3 fibroblasts. Additionally, the materials exhibited low ionic release (<0.01%), reducing potential adverse effects. Mechanistic analysis showed that the carbon support and synergistic interactions between WO₃ and Ag modulated ⦁OH radical production, even without light, enhancing the material's cytotoxic efficiency. These findings highlight the therapeutic potential of WO₃:Ag heterostructures as a safe and effective approach for treating aggressive cancers like bladder carcinoma, emphasizing the importance of further development in advanced biofunctional materials. This study also highlights the therapeutic potential of carbon-supported WO3:Ag heterostructures in bladder cancer treatment and underscores the importance of continued research in the development of novel anticancer strategies.

Article Details

How to Cite
Fragelli, B., Margareth de Almeida Rodolpho, J., Frando de Godoy, K., Ordonho Líbero, L., Ignácio Granone, L., Sandra Churio, M. ., Muniz Rennó, A. C., de Freitas Anibal, F., Longo, E., & Assis, M. (2024). Investigation of ROS-Driven Cytotoxic Mechanisms in WO3:Ag Heterostructures Supported on Carbon Against Bladder Cancer. International Journal of Pharmaceutical and Bio Medical Science, 4(12), 954–968. https://doi.org/10.47191/ijpbms/v4-i12-07
Section
Articles

References

I. B.W. Stewart, C.P. Wild, WORLD CANCER REPORT 2014, 2014.

II. Globocan, International Agency for Research on Cancer. WHO Chron 23 (2020) 323–326.

III. I. et al. JUBBER, Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors, Eur Urol (2023).

IV. L. Tran, J.F. Xiao, N. Agarwal, J.E. Duex, D. Theodorescu, Advances in bladder cancer biology and therapy, Nat Rev Cancer 21 (2021) 104–121. https://doi.org/10.1038/s41568-020-00313-1.

V. M.S. Lawrence, P. Stojanov, P. Polak, G. V. Kryukov, K. Cibulskis, A. Sivachenko, S.L. Carter, C. Stewart, C.H. Mermel, S.A. Roberts, A. Kiezun, P.S. Hammerman, A. McKenna, Y. Drier, L. Zou, A.H. Ramos, T.J. Pugh, N. Stransky, E. Helman, J. Kim, C. Sougnez, L. Ambrogio, E. Nickerson, E. Shefler, M.L. Cortés, D. Auclair, G. Saksena, D. Voet, M. Noble, D. Dicara, P. Lin, L. Lichtenstein, D.I. Heiman, T. Fennell, M. Imielinski, B. Hernandez, E. Hodis, S. Baca, A.M. Dulak, J. Lohr, D.A. Landau, C.J. Wu, J. Melendez-Zajgla, A. Hidalgo-Miranda, A. Koren, S.A. McCarroll, J. Mora, R.S. Lee, B. Crompton, R. Onofrio, M. Parkin, W. Winckler, K. Ardlie, S.B. Gabriel, C.W.M. Roberts, J.A. Biegel, K. Stegmaier, A.J. Bass, L.A. Garraway, M. Meyerson, T.R. Golub, D.A. Gordenin, S. Sunyaev, E.S. Lander, G. Getz, Mutational heterogeneity in cancer and the search for new cancer-associated genes, Nature 499 (2013) 214–218. https://doi.org/10.1038/nature12213.

VI. L.B. Alexandrov, S. Nik-Zainal, D.C. Wedge, S.A.J.R. Aparicio, S. Behjati, A. V. Biankin, G.R. Bignell, N. Bolli, A. Borg, A.L. Børresen-Dale, S. Boyault, B. Burkhardt, A.P. Butler, C. Caldas, H.R. Davies, C. Desmedt, R. Eils, J.E. Eyfjörd, J.A. Foekens, M. Greaves, F. Hosoda, B. Hutter, T. Ilicic, S. Imbeaud, M. Imielinsk, N. Jäger, D.T.W. Jones, D. Jonas, S. Knappskog, M. Koo, S.R. Lakhani, C. López-Otín, S. Martin, N.C. Munshi, H. Nakamura, P.A. Northcott, M. Pajic, E. Papaemmanuil, A. Paradiso, J. V. Pearson, X.S. Puente, K. Raine, M. Ramakrishna, A.L. Richardson, J. Richter, P. Rosenstiel, M. Schlesner, T.N. Schumacher, P.N. Span, J.W. Teague, Y. Totoki, A.N.J. Tutt, R. Valdés-Mas, M.M. Van Buuren, L. Van ’T Veer, A. Vincent-Salomon, N. Waddell, L.R. Yates, J. Zucman-Rossi, P. Andrew Futreal, U. McDermott, P. Lichter, M. Meyerson, S.M. Grimmond, R. Siebert, E. Campo, T. Shibata, S.M. Pfister, P.J. Campbell, M.R. Stratton, Signatures of mutational processes in human cancer, Nature 500 (2013) 415–421. https://doi.org/10.1038/nature12477.

VII. C.S. Garris, J.L. Wong, J. V. Ravetch, D.A. Knorr, Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer, Sci Transl Med 13 (2021). https://doi.org/10.1126/scitranslmed.abd1346.

VIII. B.A. John, N. Said, Insights from animal models of bladder cancer: recent advances, challenges, and opportunities, Oncotarget 8 (2017) 57766–57781. https://doi.org/10.18632/oncotarget.17714.

IX. Y. Zhu, S. Pang, C. Lei, Y. Luo, Q. Chu, W. Tan, Development of a therapy against metastatic bladder cancer using an interleukin-2 surface-modified MB49 bladder cancer stem cells vaccine, Stem Cell Res Ther 6 (2015) 224.

https://doi.org/10.1186/s13287-015-0211-1.

X. M. Burger, J.W.F. Catto, G. Dalbagni, H.B. Grossman, H. Herr, P. Karakiewicz, W. Kassouf, L.A. Kiemeney, C. La Vecchia, S. Shariat, Y. Lotan, Epidemiology and risk factors of urothelial bladder cancer, Eur Urol 63 (2013) 234–241. https://doi.org/10.1016/j.eururo.2012.07.033.

XI. A. Jurj, C. Braicu, L.A. Pop, C. Tomuleasa, C.D. Gherman, I. Berindan-Neagoe, The new era of nanotechnology, an alternative to change cancer treatment, Drug Des Devel Ther 11 (2017) 2871–2890. https://doi.org/10.2147/DDDT.S142337.

XII. And Bawendi.M.G. Murray, C. B., Kagan.R., Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annual Review of Materials Science 30 (2006) 545–610.

XIII. A.R.C. Braga, L.G. Trindade, S.P. Ramos, M. Bürck, M.M. Nakamoto, L.R. Bernardo, L.O. Libero, A.F. Gouveia, M. Assis, Design Ag-Based Semiconductors for Antimicrobial Technologies: Challenges and Future Trends, in: Nanomaterials for Biomedical and Bioengineering Applications, Springer Nature Singapore, Singapore, 2024: pp. 277–300. https://doi.org/10.1007/978-981-97-0221-3_11.

XIV. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study, Int J Nanomedicine 7 (2012) 6003–6009. https://doi.org/10.2147/IJN.S35347.

XV. H. Qin, H. Cao, Y. Zhao, C. Zhu, T. Cheng, Q. Wang, X. Peng, M. Cheng, J. Wang, G. Jin, Y. Jiang, X. Zhang, X. Liu, P.K. Chu, In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium, Biomaterials 35 (2014) 9114–9125. https://doi.org/10.1016/j.biomaterials.2014.07.040.

XVI. T. Bruna, F. Maldonado-Bravo, P. Jara, N. Caro, Silver nanoparticles and their antibacterial applications, Int J Mol Sci 22 (2021). https://doi.org/10.3390/ijms22137202.

XVII. D. Bamal, A. Singh, G. Chaudhary, M. Kumar, M. Singh, N. Rani, P. Mundlia, A.R. Sehrawat, Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review, Nanomaterials 11 (2021). https://doi.org/10.3390/nano11082086.

XVIII. Z.A. Ratan, M.F. Haidere, Md. Nurunnabi, S.Md. Shahriar, A.J.S. Ahammad, Y.Y. Shim, M.J.T. Reaney, J.Y. Cho, Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects, Cancers (Basel) 12 (2020) 855. https://doi.org/10.3390/cancers12040855.

XIX. K. Y, N. M, A. M, K. AT, A. T, A. N, S. ZK, Bio-Synthesized Silver Nanoparticles Using Different Plant Extracts as Anti-Cancer Agent, J Nanomedine Biotherapeutic Discov 07 (2017). https://doi.org/10.4172/2155-983X.1000154.

XX. Y. Hiraku, Y. Nishikawa, N. Ma, T. Afroz, K. Mizobuchi, R. Ishiyama, Y. Matsunaga, T. Ichinose, S. Kawanishi, M. Murata, Nitrative DNA damage induced by carbon-black nanoparticles in macrophages and lung epithelial cells, Mutat Res Gen Tox En 818 (2017) 7–16. https://doi.org/10.1016/j.mrgentox.2017.04.002.

XXI. A.F. Gouveia, R.A. Roca, N.G. Macedo, L.S. Cavalcante, E. Longo, M.A. San-Miguel, A. Altomare, G.S. da Silva, J. Andrés, Ag2WO4 as a multifunctional material: Fundamentals and progress of an extraordinarily versatile semiconductor, Journal of Materials Research and Technology 21 (2022) 4023–4051. https://doi.org/10.1016/j.jmrt.2022.11.011.

XXII. M. Assis, E. Cordoncillo, R. Torres-Mendieta, H. Beltrán-Mir, G. Mínguez-Vega, R. Oliveira, E.R. Leite, C.C. Foggi, C.E. Vergani, E. Longo, J. Andrés, Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation, Sci Rep 8 (2018) 1884. https://doi.org/10.1038/s41598-018-19270-9.

XXIII. N.G. Macedo, T.R. Machado, R.A. Roca, M. Assis, C.C. Foggi, V. Puerto-Belda, G. Mínguez-Vega, A. Rodrigues, M.A. San-Miguel, E. Cordoncillo, H. Beltrán-Mir, J. Andrés, E. Longo, Tailoring the Bactericidal Activity of Ag Nanoparticles/α-Ag 2 WO 4 Composite Induced by Electron Beam and Femtosecond Laser Irradiation: Integration of Experiment and Computational Modeling, ACS Appl Bio Mater 2 (2019) 824–837. https://doi.org/10.1021/acsabm.8b00673.

XXIV. B.N.A. da S. Pimentel, F.H. Marin-Dett, M. Assis, P.A. Barbugli, E. Longo, C.E. Vergani, Antifungal Activity and Biocompatibility of α-AgVO3, α-Ag2WO4, and β-Ag2MoO4 Using a Three-Dimensional Coculture Model of the Oral Mucosa, Front Bioeng Biotechnol 10 (2022). https://doi.org/10.3389/fbioe.2022.826123.

XXV. L.O. Laier, M. Assis, C.C. Foggi, A.F. Gouveia, C.E. Vergani, L.C.L. Santana, L.S. Cavalcante, J. Andrés, E. Longo, Surface-dependent properties of α-Ag2WO4: a joint experimental and theoretical investigation, Theor Chem Acc 139 (2020) 108. https://doi.org/10.1007/s00214-020-02613-z.

XXVI. M. Assis, L.K. Ribeiro, M.O. Gonçalves, L.H. Staffa, R.S. Paiva, L.R. Lima, D. Coelho, L.F. Almeida, L.N. Moraes, I.L. V. Rosa, L.H. Mascaro, R.M.T. Grotto, C.P. Sousa, J. Andrés, E. Longo, S.A. Cruz, Polypropylene Modified with Ag-Based Semiconductors as a Potential Material against SARS-CoV-2 and Other Pathogens, ACS Appl Polym Mater 4 (2022) 7102–7114. https://doi.org/10.1021/acsapm.2c00744.

XXVII. L.A. Onue, L.K. Ribeiro, M.O. Gonçalves, E. Longo, C. Paiva de Sousa, M. Assis, S.A. Cruz, Unveiling Antimicrobial Properties and Crystallization Induction in PLA Using α-Ag 2 WO 4 Nanoparticles, ACS Appl Polym Mater 6 (2024) 3233–3242. https://doi.org/10.1021/acsapm.3c03012.

XXVIII. M. Assis, A.F. Gouveia, L.K. Ribeiro, M.A. Ponce, M.S. Churio, O.N. Oliveira, L.H. Mascaro, E. Longo, R. Llusar, E. Guillamón, J. Andrés, Towards an efficient selective oxidation of sulfides to sulfones by NiWO and α-AgWO, Appl Catal A Gen 652 (2023) 119038.

https://doi.org/10.1016/j.apcata.2023.119038.

XXIX. L.K. Ribeiro, A.F. Gouveia, F. das C.M. Silva, L.F.G. Noleto, M. Assis, A.M. Batista, L.S. Cavalcante, E. Guillamón, I.L. V. Rosa, E. Longo, J. Andrés, G.E. Luz Júnior, Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag2WO4, Nanomaterials 12 (2022) 3316. https://doi.org/10.3390/nano12193316.

XXX. B.D.L. Fragelli, M. Assis, J.M.A. Rodolpho, K.F. Godoy, L.O. Líbero, F.F. Anibal, E. Longo, Modulation of cell death mechanisms via α-Ag2WO4 morphology-dependent factors, J Photochem Photobiol B 257 (2024) 112947. https://doi.org/10.1016/j.jphotobiol.2024.112947.

XXXI. C.B. de Abreu, R.C. Gebara, L.L. dos Reis, G.S. Rocha, L.O.G. Alho, L.M. Alvarenga, L.S. Virtuoso, M. Assis, A. da S. Mansano, E. Longo, M. da G.G. Melão, Effects of α-Ag2WO4 crystals on photosynthetic efficiency and biomolecule composition of the algae Raphidocelis subcapitata, Water Air Soil Pollut 233 (2022) 121. https://doi.org/10.1007/s11270-022-05604-x.

XXXII. C.B. de Abreu, R.C. Gebara, L.L. dos Reis, G.S. Rocha, L. de O.G. Alho, L.M. Alvarenga, L.S. Virtuoso, M. Assis, A. da S. Mansano, E. Longo, M. da G.G. Melão, Toxicity of α-Ag2WO4 microcrystals to freshwater microalga Raphidocelis subcapitata at cellular and population levels, Chemosphere 288 (2022) 132536. https://doi.org/10.1016/j.chemosphere.2021.132536.

XXXIII. M. Assis, T. Robeldo, C.C. Foggi, A.M. Kubo, G. Mínguez-Vega, E. Condoncillo, H. Beltran-Mir, R. Torres-Mendieta, J. Andrés, M. Oliva, C.E. Vergani, P.A. Barbugli, E.R. Camargo, R.C. Borra, E. Longo, Ag Nanoparticles/α-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents, Sci Rep 9 (2019) 9927. https://doi.org/10.1038/s41598-019-46159-y.

XXXIV. Y. Cai, Y. Liu, W. Yan, Q. Hu, J. Tao, M. Zhang, Z. Shi, R. Tang, Role of hydroxyapatite nanoparticle size in bone cell proliferation, J Mater Chem 17 (2007) 3780–3787.

https://doi.org/10.1039/b705129h.

XXXV. S. Metwally, U. Stachewicz, Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications, Materials Science and Engineering C 104 (2019) 109883. https://doi.org/10.1016/j.msec.2019.109883.

XXXVI. L.E. Feinendegen, Reactive oxygen species in cell responses to toxic agents, Hum Exp Toxicol 21 (2002) 85–90.

https://doi.org/10.1191/0960327102ht216oa.

XXXVII. P.P. Fu, Q. Xia, H.M. Hwang, P.C. Ray, H. Yu, Mechanisms of nanotoxicity: Generation of reactive oxygen species, J Food Drug Anal 22 (2014) 64–75. https://doi.org/10.1016/j.jfda.2014.01.005.

XXXVIII. L.Z. Flores-López, H. Espinoza-Gómez, R. Somanathan, Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review, Journal of Applied Toxicology 39 (2019) 16–26. https://doi.org/10.1002/jat.3654.

XXXIX. M. Assis, M.S. Castro, C.M. Aldao, C. Buono, P.P. Ortega, M.D. Teodoro, J. Andrés, A.F. Gouveia, A.Z. Simões, E. Longo, C.E. Macchi, A. Somoza, F. Moura, M.A. Ponce, Disclosing the nature of vacancy defects in α-Ag2WO4, Mater Res Bull 164 (2023) 112252.

https://doi.org/10.1016/j.materresbull.2023.112252.

XL. K.L. Patrocinio, J.R. Santos, L.I. Granone, M.A. Ponce, M.S. Churio, L.K. Ribeiro, M.D. Teodoro, R. Llusar, J. Andrés, E. Longo, M. Assis, Tuning the morphology to enhance the catalytic activity of α-Ag 2 WO 4 through V-doping, Dalton Transactions 52 (2023) 14982–14994.

https://doi.org/10.1039/D3DT02352D.

XLI. ATCC - American Type Culture Collection, NIH/3T3, (n.d.).

XLII. F. Chen, G. Zhang, Y. Cao, M.J. Hessner, W.A. See, MB49 Murine Urothelial Carcinoma: Molecular and Phenotypic Comparison to Human Cell Lines as a Model of the Direct Tumor Response to Bacillus Calmette-Guerin, Journal of Urology 182 (2009) 2932–2937. https://doi.org/10.1016/j.juro.2009.08.018.

XLIII. Tim. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, J Immunol Methods 65 (1983) 55–63.

https://doi.org/10.1039/c6ra17788c.

XLIV. G. Repetto, A. del Peso, J.L. Zurita, Neutral red uptake assay for the estimation of cell viability/ cytotoxicity, Nat Protoc 3 (2008) 1125–1131. https://doi.org/10.1038/nprot.2008.75.

XLV. W.K. Martins, D. Severino, C. Souza, B.S. Stolf, M.S. Baptista, Rapid screening of potential autophagic inductor agents using mammalian cell lines, Biotechnol J 8 (2013) 730–737. https://doi.org/10.1002/biot.201200306.

XLVI. L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, S.R. Tannenbaum, Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids, Anal Biochem 126 (1982) 131–138. https://doi.org/10.1016/0003-2697(82)90118-X.

XLVII. L.A. Ramos, C.C.S. Cavalheiro, É.T.G. Cavalheiro, Determinação de nitrito em águas utilizando extrato de flores, Quim Nova 29 (2006) 1114–1120. https://doi.org/10.1590/S0100-40422006000500037.

XLVIII. B.E. Saltzman, Colorimetric Microdetermination of Nitrogen Dioxide in the Atmosphere, Anal Chem 26 (1954) 1949–1955.

https://doi.org/10.1021/ac60096a025.

XLIX. D. Mustika, T. Torowati, S. Sudirman, A. Fisli, I.M. Joni, R. Langenati, J. Setiawan, Purification of Indonesian Natural Graphite by Acid Leaching Method as Nuclear Fuel Matrix: Physical Characterization, Int J Chem 11 (2019) 9. https://doi.org/10.5539/ijc.v11n1p9.

L. E.Z. da Silva, G.M. Faccin, T.R. Machado, N.G. Macedo, M. de Assis, S. Maya-Johnson, J.C. Sczancoski, J. Andrés, E. Longo, M.A. San-Miguel, Connecting Theory with Experiment to Understand the Sintering Processes of Ag Nanoparticles, The Journal of Physical Chemistry C 123 (2019) 11310–11318. https://doi.org/10.1021/acs.jpcc.9b02107.

LI. H. Simchi, B.E. McCandless, T. Meng, W.N. Shafarman, Structural, optical, and surface properties of WO3 thin films for solar cells, J Alloys Compd 617 (2014) 609–615.

https://doi.org/10.1016/j.jallcom.2014.08.047.

LII. B. Salesa, A. Tuñón-Molina, A. Cano-Vicent, M. Assis, J. Andrés, Á. Serrano-Aroca, Graphene Nanoplatelets: In Vivo and In Vitro Toxicity, Cell Proliferative Activity, and Cell Gene Expression, Applied Sciences 12 (2022) 720.

https://doi.org/10.3390/app12020720.

LIII. K. Zhang, X. Zhang, H. Li, X. Xing, L. Jin, Q. Cao, P. Li, Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil, J Mater Sci 53 (2018) 2484–2496. https://doi.org/10.1007/s10853-017-1729-7.

LIV. L. Zhou, H.J. Forman, Y. Ge, J. Lunec, Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion, Toxicology in Vitro 42 (2017) 292–298.

https://doi.org/10.1016/j.tiv.2017.04.027.

LV. B.D.L. Fragelli, M. Assis, J.M.A. Rodolpho, K.F. Godoy, L.O. Líbero, F.F. Anibal, E. Longo, Modulation of cell death mechanisms via α-Ag2WO4 morphology-dependent factors, J Photochem Photobiol B 257 (2024).

https://doi.org/10.1016/j.jphotobiol.2024.112947.

LVI. A.B. Apolo, N.J. Vogelzang, D. Theodorescu, New and Promising Strategies in the Management of Bladder Cancer, 2015.

https://doi.org/10.14694/EdBook_AM.2015.35.105

LVII. G. Annamalai, S. Kathiresan, N. Kannappan, [6]-Shogaol, a dietary phenolic compound, induces oxidative stress mediated mitochondrial dependant apoptosis through activation of proapoptotic factors in Hep-2 cells, Biomedicine & Pharmacotherapy 82 (2016) 226–236.

https://doi.org/10.1016/j.biopha.2016.04.044.

LVIII. D.B. Zorov, M. Juhaszova, S.J. Sollott, Mitochondrial ROS-induced ROS release: An update and review, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1757 (2006) 509–517. https://doi.org/10.1016/j.bbabio.2006.04.029.

LIX. Q. Xie, Z. Yuan, H. Hou, H. Zhao, H. Chen, X. Ni, Effects of ROS and caspase-3-like protein on the growth and aerenchyma formation of Potamogeton perfoliatus stem, Protoplasma 260 (2023) 307–325. https://doi.org/10.1007/s00709-022-01780-z.

LX. D.B. Zorov, C.R. Filburn, L.-O. Klotz, J.L. Zweier, S.J. Sollott, Reactive Oxygen Species (Ros-Induced) Ros Release, J Exp Med 192 (2000) 1001–1014. https://doi.org/10.1084/jem.192.7.1001.

LXI. A.S. Fomicheva, A.I. Tuzhikov, R.E. Beloshistov, S. V. Trusova, R.A. Galiullina, L. V. Mochalova, N. V. Chichkova, A.B. Vartapetian, Programmed cell death in plants, Biochemistry (Moscow) 77 (2012) 1452–1464. https://doi.org/10.1134/S0006297912130044.

LXII. E. Eskandari, C.J. Eaves, Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis, Journal of Cell Biology 221 (2022). https://doi.org/10.1083/jcb.202201159.

LXIII. E. Eskandari, C.J. Eaves, Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis, Journal of Cell Biology 221 (2022). https://doi.org/10.1083/jcb.202201159.

LXIV. A.A. Bhat, R. Thapa, O. Afzal, N. Agrawal, W.H. Almalki, I. Kazmi, S.I. Alzarea, A.S.A. Altamimi, P. Prasher, S.K. Singh, K. Dua, G. Gupta, The pyroptotic role of Caspase-3/GSDME signalling pathway among various cancer: A Review, Int J Biol Macromol 242 (2023) 124832.

https://doi.org/10.1016/j.ijbiomac.2023.124832.

LXV. M. Godoy-Gallardo, U. Eckhard, L.M. Delgado, Y.J.D. de Roo Puente, M. Hoyos-Nogués, F.J. Gil, R.A. Perez, Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications, Bioact Mater 6 (2021) 4470–4490.

https://doi.org/10.1016/j.bioactmat.2021.04.033.

LXVI. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int J Nanomedicine Volume 12 (2017) 1227–1249. https://doi.org/10.2147/IJN.S121956.

LXVII. L.O. Libero, L.K. Ribeiro, L.I. Granone, M.S. Churio, J.C. Souza, V.R. Mastelaro, J. Andrés, E. Longo, L.H. Mascaro, M. Assis, Introducing Structural Diversity: Fe 2 (MoO 4 ) 3 Immobilized in Chitosan Films as an Efficient Catalyst for the Selective Oxidation of Sulfides to Sulfones, ChemCatChem 15 (2023).

https://doi.org/10.1002/cctc.202300421.

LXVIII. S.K. Han, T.-M. Hwang, Y. Yoon, J.-W. Kang, Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR), Chemosphere 84 (2011) 1095–1101. https://doi.org/10.1016/j.chemosphere.2011.04.051.

LXIX. M. Assis, T. Robeldo, C.C. Foggi, A.M. Kubo, G. Mínguez-Vega, E. Condoncillo, H. Beltran-Mir, R. Torres-Mendieta, J. Andrés, M. Oliva, C.E. Vergani, P.A. Barbugli, E.R. Camargo, R.C. Borra, E. Longo, Ag Nanoparticles/α-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents, Sci Rep 9 (2019) 9927. https://doi.org/10.1038/s41598-019-46159-y.

LXX. S. Chinde, N. Dumala, M.F. Rahman, S.S.K. Kamal, S.I. Kumari, M. Mahboob, P. Grover, Toxicological assessment of tungsten oxide nanoparticles in rats after acute oral exposure, Environmental Science and Pollution Research 24 (2017) 13576–13593. https://doi.org/10.1007/s11356-017-8892-x.

LXXI. E. Caballero‐Díaz, C. Pfeiffer, L. Kastl, P. Rivera‐Gil, B. Simonet, M. Valcárcel, J. Jiménez‐Lamana, F. Laborda, W.J. Parak, The Toxicity of Silver Nanoparticles Depends on Their Uptake by Cells and Thus on Their Surface Chemistry, Particle & Particle Systems Characterization 30 (2013) 1079–1085. https://doi.org/10.1002/ppsc.201300215.

LXXII. F. Sambale, S. Wagner, F. Stahl, R.R. Khaydarov, T. Scheper, D. Bahnemann, Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines, J Nanomater 2015 (2015).

https://doi.org/10.1155/2015/136765.

LXXIII. R.A. Capeli, T. Belmonte, J. Caierão, C.J. Dalmaschio, S.R. Teixeira, V.R. Mastelaro, A.J. Chiquito, M.D. Teodoro, J.F.M. Domenegueti, E. Longo, L.G. Trindade, F.M. Pontes, Effect of hydrothermal temperature on the antibacterial and photocatalytic activity of WO3 decorated with silver nanoparticles, J Solgel Sci Technol 97 (2021) 228–244. https://doi.org/10.1007/s10971-020-05433-6.

LXXIV. M. Assis, M.S. Castro, C.M. Aldao, C. Buono, P.P. Ortega, M.D. Teodoro, J. Andrés, A.F. Gouveia, A.Z. Simões, E. Longo, C.E. Macchi, A. Somoza, F. Moura, M.A. Ponce, Disclosing the nature of vacancy defects in α-Ag2WO4, Mater Res Bull 164 (2023) 112252.

https://doi.org/10.1016/j.materresbull.2023.112252.

LXXV. M. Assis, L.G.P. Simoes, G.C. Tremiliosi, L.K. Ribeiro, D. Coelho, D.T. Minozzi, R.I. Santos, D.C.B. Vilela, L.H. Mascaro, J. Andrés, E. Longo, PVC-SiO2-Ag composite as a powerful biocide and anti-SARS-CoV-2 material, Journal of Polymer Research 28 (2021) 361.

https://doi.org/10.1007/s10965-021-02729-1.

LXXVI. R. Georgekutty, M.K. Seery, S.C. Pillai, A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism, The Journal of Physical Chemistry C 112 (2008) 13563–13570.

https://doi.org/10.1021/jp802729a.

LXXVII. L.K. Ribeiro, M. Assis, L.R. Lima, D. Coelho, M.O. Gonçalves, R.S. Paiva, L.N. Moraes, L.F. Almeida, F. Lipsky, M.A. San-Miguel, L.H. Mascaro, R.M.T. Grotto, C.P. Sousa, I.L. V. Rosa, S.A. Cruz, J. Andrés, E. Longo, Bioactive Ag 3 PO 4 /Polypropylene Composites for Inactivation of SARS-CoV-2 and Other Important Public Health Pathogens, J Phys Chem B 125 (2021) 10866–10875. https://doi.org/10.1021/acs.jpcb.1c05225.

LXXVIII. M. Assis, J.S. da Silva, M.O. Gonçalves, J.M. de Almeida Rodolpho, B.D. de Lima Fragelli, A.B.P. Corte, L.K. Ribeiro, M.D. Teodoro, F. de Freitas Anibal, C.P. de Sousa, O.N. Oliveira, J. Andrés, E. Longo, Bactericidal activity of Ag4V2O7/β-AgVO3 heterostructures against antibiotic-resistant Klebsiella pneumoniae, Biomaterials Advances 141 (2022) 213097.

https://doi.org/10.1016/j.bioadv.2022.213097.

LXXIX. M. Assis, L.K. Ribeiro, M.O. Gonçalves, L.H. Staffa, R.S. Paiva, L.R. Lima, D. Coelho, L.F. Almeida, L.N. Moraes, I.L. V. Rosa, L.H. Mascaro, R.M.T. Grotto, C.P. Sousa, J. Andrés, E. Longo, S.A. Cruz, Polypropylene Modified with Ag-Based Semiconductors as a Potential Material against SARS-CoV-2 and Other Pathogens, ACS Appl Polym Mater 4 (2022) 7102–7114.

https://doi.org/10.1021/acsapm.2c00744.

LXXX. M. Assis, J.S. da Silva, M.O. Gonçalves, J.M. de Almeida

Most read articles by the same author(s)