Therapeutic Effect of Green Synthesized Mno2 Nanoparticles for Treatment of Hyperbilirubinemia -An in-Vivo Study

Main Article Content

Satarupa Bhattacherjee
Munmun Bardhan
Aniruddha Banerjee
Madhureema Dey
Ruma Basu
Sukhen Das
Sandip Kumar Sinha

Abstract

Green synthesized manganese oxide (MnO2) nano-conjugate have been widely used as biomedicine in different medical applications. Solanum lycopersicum (Tomato) extract is used to synthesizes MnO2 nanoparticles following a green route, and the synthesized nanoparticles is characterized by XRD, FTIR, UV-Vis, SEM, and later on applied for the evaluation of hepato-protective and anti-oxidant activities in mice. Biochemical tests such as bilirubin, liver function test (LFT), hematological parameters provide evidences for high and non-toxic efficacy of green synthesized nanomaterials in the symptomatic treatment of  hepatic damage. Histopathological changes in liver were investigated in presence of the synthesized nanoconjugate and compared with conventional drug. These results suggest that these green synthesized nanomaterials could appear as an important ameliorative agent and effective for jaundice as well as other related hepatic disorders and could be developed as safe and efficient alternatives to conventional drugs.

Article Details

How to Cite
Satarupa Bhattacherjee, Munmun Bardhan, Aniruddha Banerjee, Madhureema Dey, Ruma Basu, Sukhen Das, & Sandip Kumar Sinha. (2022). Therapeutic Effect of Green Synthesized Mno2 Nanoparticles for Treatment of Hyperbilirubinemia -An in-Vivo Study. International Journal of Pharmaceutical and Bio Medical Science, 2(3), 33–42. https://doi.org/10.47191/ijpbms/v2-i3-02
Section
Articles

References

I. Logeswari P, Silambarasan S and Abraham J J.Saudi Chem. Soc. 2015;19: 311.

II. Hafez A, Naserzadeh P, Ashtari K, Mortazavian M Salimi A Regulatory Toxicology and Pharmacology. 2018; 98:240–244.

III. Bhardwaj B, Singh P, Kumar A , Kumar S, Budhwar V Adv Pharm Bull 2020;10(4): 566-576.

IV. Haneefa M M, Jayandran M Asian J. Pharm. 2017; 11: 65-74.

V. Liu X, Chen C, Zhao Y, Jia B J.Nanomaterials 2013. doi.org/10.1155/2013/736375.

VI. Wang X, Li Y JACS. 2002; 12: 2880-2881.

VII. Wei W, Cui X, Chena W and Douglas G J. Chem. Soc. Rev. 2011; 1697-1721.

VIII. Ullah S, Rahaman K, Hedayati M Iran J Public Health. 2016; 45: 558-568.

IX. Nag N, Chaudhuri S, Adhikary R, Mazumder S J. Biochem. Biophys. 2009; 46 :73–78.

X. Dennery PA, Seidman DS, Stevenson D K J. Med. 2001; 344: 581–590.

XI. Giri A, Goswami N, Sasmal C et al RSC Adv. 2014; 4(10):5075–5079.

XII. Giri A, Goswami N, Pal M et al J. Mater. Chem. C 2013; 1(9): 1885–1895.

XIII. Perveen R, Suleria H, Anjum F Critical review in Food and nutrition. 2015; 55: 919-929.

XIV. Erba D, Cristinia M, Agusti A Journal of food Composition and Analysis. 2013; 31: 245-251.

XV. D. Xu, Y. Li, X. Meng, T. Zhou, Y. Zhou, J. Zheng, J. Zhang, H. Li Int. J. Mol. Sci. 2017; 18: 96.

XVI. Sopyan I, Gozali D and Tiassetiana S Natl. J. Physiol. Pharm. Pharmacol 2017; 8:, 453.

XVII. Liu X, Chen C, Zhao Y, Jia B J. Nanomaterials. 2013; Doi:10.1155/2013/736375: 1-7.

XVIII. Jaeschke H, Ramachandran A Reactive oxygen species (Apex, N.C.). 2018; 5: 145–158.

XIX. Natalia A O, Terrence M D Jr, Kharbanda K K. Alcohol Res. 2017; 38(2): 147-161.

XX. Portmann B, Talbot IC, Day DW, DavidsonAR, Murray IM, Williams R J Pathol. 1975; 117:169–181.

XXI. Kumar V, Singh K, Panwar S, Mehta S K International Nano Letters 2017; 7:123–131.

XXII. Popiolek I, Hydzik P, Jagielski P, Zrodlowska M, Mystek K, Porebshi G Medicina. 2021; 57(8): 752.

XXIII. Vial G, Dubouchand H, Couturier K, Teleux N , Athians A , Galinner A, Casteilla L, Leverve X J. Hepatology. 2011; 54: 348-356.

XXIV. Rotundo L, Pyrsopoulos N World J Hepatolo. 2020; 12(4): 125-136.

XXV. Cacciapuoti F, Scognamiglio A, Palumbo R, Forte R, Cacciapuoti F World J Hepatolo 2013; 5(3): 109–113.

XXVI. Arshad A M, Bangash M N J. Intensive Care Soc. 2021; 0:1-8.

XXVII. Kelly L H, Elizabeth E P, Katharine M I Br J Clin Pharmacol 2016; 81(2):210-222.