Established qPCR Method Using Strain-Specific Primers for Enumeration of Paraprobiotic Lactobacillus plantarum L137

Main Article Content

Yen Thi Ngoc Nguyen
Nhan Thi Vo

Abstract

Lactobacillus plantarum, extensively present in fermented foods and the human intestinal tract, has numerous health advantages, including regulating systemic immunity, maintaining a balanced intestinal flora, and lowering the risk of tumour progression. Because the health benefits and safety are strain-specific, it is essential to have a trustworthy method for the specific detection and enumeration of L. plantarum L137 to verify probiotic efficacy. The real-time PCR tool was developed using strain-specific primer pairs from the specialized plasmid pLTK2 and successfully validated for specificity, precision, and amplification efficiency. The assay achieved 100% true positive and 0% false positive results by effectively amplifying the target sample and not amplifying any of the six non-target strains. The limit of quantification was established to be 1.7.103 CFU/reaction. The reaction efficiency values were 86.7%, with an R2 value of 0.9864. The repeatability's relative standard deviation (RSD) was 2.34%. The qPCR assay for L. plantarum L137 was found to meet the specific, precise, and efficient requirements. To meet compliance standards, it is crucial to have a reliable and approved assay for strain-specific identification and enumeration for probiotic products.

Article Details

How to Cite
Yen Thi Ngoc Nguyen, & Nhan Thi Vo. (2024). Established qPCR Method Using Strain-Specific Primers for Enumeration of Paraprobiotic Lactobacillus plantarum L137. International Journal of Pharmaceutical and Bio Medical Science, 4(9), 759–764. https://doi.org/10.47191/ijpbms/v4-i9-09
Section
Articles

References

I. Todorov SD, Franco BDGDM. Lactobacillus plantarum: Characterization of the species and spplication in food production. Food Reviews International. 2010; 26(3):205-229. doi:10.1080/87559129.2010.484113.

II. Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: A review. Frontiers in nutrition. 2020; 7:570344. doi:10.3389/fnut.2020.570344.

III. Le B, Yang SH. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicology reports. 2018; 5:314-317. doi:10.1016/j.toxrep.2018.02.007.

IV. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and antimicrobial proteins. 2017; 9(2):111-122. doi:10.1007/s12602-017-9264-z.

V. Liu Y, Yu X, Yu L, Tian F, Zhao J, Zhang H, Qian L, Wang Q, Xue Z, Zhai Q. Lactobacillus plantarum CCFM8610 alleviates irritable bowel syndrome and prevents gut microbiota dysbiosis: A randomized, double-blind, placebo-controlled, pilot clinical trial. Engineering. 2021; 7(3):376-385. doi:10.1016/j.eng.2020.06.026.

VI. Sun M, Liu W, Song Y, Tuo Y, Mu G, Ma F. The Effects of Lactobacillus plantarum-12 crude exopolysaccharides on the cell proliferation and apoptosis of human colon cancer (HT-29) cells. Probiotics and antimicrobial proteins. 2021; 13(2):413-421. doi:10.1007/s12602-020-09699-8.

VII. Zhao W, Peng C, Sakandar HA, Kwok L-Y, Zhang W. Meta-analysis: Randomized trials of Lactobacillus plantarum on immune regulation over the last decades. Frontiers in Immunology. 2021; 12:643420. doi:10.3389/fimmu.2021.643420.

VIII. Shripada R, Gayatri A-J, Sanjay P. Paraprobiotics. In: Faintuch J, Faintuch S, eds. Precision Medicine for Investigators, Practitioners and Providers. Academic Press; 2020:39-49.doi:10.1016/B978-0-12-819178-1.00005-8.

IX. Mousa WK, Mousa S, Ghemrawi R. Probiotics modulate host immune response and interact with the gut microbiota: Shaping their composition and mediating antibiotic resistance. International journal of molecular sciences. 2023; 24(18)doi:10.3390/ijms241813783.

X. Li T, Teng D, Mao R, Hao Y, Wang X, Wang J. A critical review of antibiotic resistance in probiotic bacteria. Food Research International. 2020; 136:109571. doi:10.1016/j.foodres.2020.109571.

XI. Liu X, Zhao H, Wong A. Accounting for the health risk of probiotics. Heliyon. 2024; 10(6):e27908. doi:10.1016/j.heliyon.2024.e27908.

XII. Shripada R, Gayatri A-J, Sanjay P. Chapter 5 - Paraprobiotics. In: Faintuch J, Faintuch S, eds. Precision Medicine for Investigators, Practitioners and Providers. Academic Press; 2020:39-49.doi:https://doi.org/10.1016/B978-0-12-819178-1.00005-8.

XIII. Shida K, Kiyoshima-Shibata J, Kaji R, Nagaoka M, Nanno M. Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus casei through Toll-like receptor 2-dependent and independent mechanisms. Immunology. 2009; 128(1 Suppl):e858-869. doi:10.1111/j.1365-2567.2009.03095.x.

XIV. Noh SY, Kang SS, Yun CH, Han SH. Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Molecular immunology. 2015; 64(1):183-189.

doi:10.1016/j.molimm.2014.11.014.

XV. Murofushi Y, Villena J, Morie K, Kanmani P, Tohno M, Shimazu T, Aso H, Suda Y, Hashiguchi K, Saito T, Kitazawa H. The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Molecular immunology. 2015; 64(1):63-75.

doi:10.1016/j.molimm.2014.10.027.

XVI. Zhou X, Hong T, Yu Q, Nie S, Gong D, Xiong T, Xie M. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Scientific Reports. 2017; 7(1):14247. doi:10.1038/s41598-017-14178-2.

XVII. Wang J, Zhao X, Yang Y, Zhao A, Yang Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International journal of biological macromolecules. 2015; 74:119-126. doi:10.1016/j.ijbiomac.2014.12.006.

XVIII. Zhang B, Zuo F, Yu R, Zeng Z, Ma H, Chen S. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells. Scientific Reports. 2015; 5(1):14109. doi:10.1038/srep14109.

XIX. Waśko A, Polak-Berecka M, Paduch R, Jóźwiak K. The effect of moonlighting proteins on the adhesion and aggregation ability of Lactobacillus helveticus. Anaerobe. 2014; 30:161-168.

doi:10.1016/j.anaerobe.2014.10.002.

XX. Kainulainen V, Loimaranta V, Pekkala A, Edelman S, Antikainen J, Kylväjä R, Laaksonen M, Laakkonen L, Finne J, Korhonen TK. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. Journal of bacteriology. 2012; 194(10):2509-2519. doi:10.1128/jb.06704-11.

XXI. Behera SS, Ray RC. Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. BioMed research international. 2018; 2018:9361614. doi:10.1155/2018/9361614.

XXII. Barros CP, Guimarães JT, Esmerino EA, Duarte MCKH, Silva MC, Silva R, Ferreira BM, Sant’Ana AS, Freitas MQ, Cruz AG. Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science. 2020; 32:1-8. doi:10.1016/j.cofs.2019.12.003.

XXIII. Siciliano RA, Reale A, Mazzeo MF, Morandi S, Silvetti T, Brasca M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients. 2021; 13(4):1225.

doi:10.3390/nu13041225.

XXIV. 24. Shehata HR, Ragupathy S, Allen S, Leyer G, Newmaster SG. Real-time PCR assays for the specific identification of probiotic strains Lactobacillus gasseri BNR17 and Lactobacillus reuteri LRC (NCIMB 30242). Probiotics and antimicrobial proteins. 2021; 13(3):837-846. doi:10.1007/s12602-020-09695-y.

XXV. Shehata HR, Newmaster SG. A validated real-time PCR method for the specific identification of probiotic strain Lactobacillus rhamnosus GG (ATCC 53103). Journal of AOAC International. 2020; 103(6):1604-1609.

doi:10.1093/jaoacint/qsaa063.

XXVI. Kim E, Yang S-M, Lim B, Park SH, Rackerby B, Kim H-Y. Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate. BMC Microbiology. 2020; 20(1):96. doi:10.1186/s12866-020-01781-z.

XXVII. Shehata HR, Ragupathy S, Shanmughanandhan D, Kesanakurti P, Ehlinger TM, Newmaster SG. Guidelines for validation of qualitative real-time PCR methods for molecular diagnostic identification of probiotics. Journal of AOAC International. 2019; 102(6):1774-1778. doi:10.5740/jaoacint.18-0320.

XXVIII. Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in microbiology. 2017; 8:108. doi:10.3389/fmicb.2017.00108.

XXIX. Kaneko Y, Kobayashi H, Kiatpapan P, Nishimoto T, Napitupulu R, Ono H, Murooka Y. Development of a host-vector system for Lactobacillus plantarum L137 isolated from a traditional fermented food produced in the Philippines. Journal of bioscience and bioengineering. 2000; 89(1):62-67. doi:10.1016/s1389-1723(00)88051-2.

XXX. im E, Kim H-B, Yang S-M, Kim D, Kim H-Y. Real-time PCR assay for detecting Lactobacillus plantarum group using species/subspecies-specific genes identified by comparative genomics. LWT. 2021; 138:110789. doi:10.1016/j.lwt.2020.110789.