Formulation and Optimization of Intra Nasal Niosomal Gel of Kynurenic Acid: In Vitro in Vivo Characterization

Main Article Content

Mounika Bodige
Rakesh Kumar Jat
Ananda Kumar Chettupalli

Abstract

Kynurenic acid's (KNA) inability to cross the blood brain barrier (BBB) severely limits its usage as a neuroprotective drug, despite the fact that it may have significant therapeutic effects in neurological illnesses. Drug delivery devices are one of the new avenues we're exploring as a means for KNA to enter the brain. Due to its low absorption when taken orally, medication formulation faces a significant hurdle. Here, nasal drug delivery has emerged as a popular alternate method for increasing medication bioavailability. In light of this, the current investigation set out to increase KNA bioavailability by means of an intranasal formulation based on niosomal technology. Rapid onset and evasion of first-pass metabolism are both offered by the nasal route, whereas niosomes protect hydrophilic medicines inside their core. For the purpose of determining entrapment efficiency, particle size, and in vitro drug release, niosomes were synthesized by combining lipid, nonionic surfactant, and cholesterol in distinct ratios. With a vesicle size of 248.51±1.54nm, the optimized niosomal formulation demonstrated a superior drug content (DC) of 98216±0.11% and an entrapment efficiency (EE) of 89.23±0.35. The formulation also contained cholesterol in an equal proportion (1:1). A value of 24 minutes was shown in the in vitro drug diffusion testing, indicating that the formulation exhibited prolonged activity. Gelation occurred at 37 ⁰C, which is the body's physiological temperature, and the optimum in situ gel, which contained 1:2 carbopol 934 and benzalkonium chloride, had a t90 value of 24 hours, indicating prolonged activity. In comparison to KNA oral suspension, the results showed that the KNA-loaded niosomal gel had a much higher relative bioavailability and improved drug penetration through the nasal mucosa.

Article Details

How to Cite
Bodige, M., Rakesh Kumar Jat, & Ananda Kumar Chettupalli. (2024). Formulation and Optimization of Intra Nasal Niosomal Gel of Kynurenic Acid: In Vitro in Vivo Characterization. International Journal of Pharmaceutical and Bio Medical Science, 4(4), 292–302. https://doi.org/10.47191/ijpbms/v4-i4-06
Section
Articles

References

I. Amarachinta, P. R., Sharma, G., Samed, N., Chettupalli, A. K., Alle, M., & Kim, J. C. (2021). Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. Journal of nanobiotechnology, 19, 1-15.

II. Jahangir, M. A., Anand, C., Muheem, A., Gilani, S. J., Taleuzzaman, M., Zafar, A., ... & Barkat, M. A. (2020). Nano phytomedicine based delivery system for CNS disease. Current Drug Metabolism, 21(9), 661-673.

III. Beg, S., Al Robaian, M., Rahman, M., Imam, S. S., Alruwaili, N., & Panda, S. K. (Eds.). (2020). Pharmaceutical drug product development and process optimization: effective use of quality by design. CRC Press.

IV. Chettupalli, A. K., Ananthula, M., Amarachinta, P. R., Bakshi, V., & Yata, V. K. (2021). Design, formulation, in-vitro and ex-vivo evaluation of atazanavir loaded cubosomal gel. Biointerface Res Appl Chem, 11(4), 12037-12054.

V. Unnisa, A., Chettupalli, A. K., Al Hagbani, T., Khalid, M., Jandrajupalli, S. B., Chandolu, S., & Hussain, T. (2022). Development of dapagliflozin solid lipid nanoparticles as a novel carrier for oral delivery: statistical design, optimization, in-vitro and in-vivo characterization, and evaluation. Pharmaceuticals, 15(5), 568.

VI. Jahangir, M. A., Jain, P., Verma, R., Taleuzzaman, M., Ahsan, M. J., Chettupalli, A. K., ... & Mirza, M. (2022). Transdermal nutraceuticals delivery system for CNS disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 21(10), 977-993.

VII. Kumar, A. C., Krishna, R. G., Venkanna, C. K., & Rafi, S. (2017). Formulation and characterization of itraconazole ethosomal gel for topical application. J Bio Innov, 6, 55-64.

VIII. Bakshi, V., Amarachinta, P. R., & Chettupalli, A. K. (2022). Design, development and optimization of solid lipid nanoparticles of Rizatriptan for intranasal delivery: invitro & invivo assessment. Materials Today: Proceedings, 66, 2342-2357.

IX. Jahangir, M. A., Muheem, A., Haque, M. A., Ananda, C., Taleuzzaman, M., & Kala, C. (2022). Formulation and Challenges in Liposomal Technology in Functional Food and Nutraceuticals. In Liposomes for Functional Foods and Nutraceuticals (pp. 165-195). Apple Academic Press.

X. Hemalatha, C. H., Vasavi, G., Kumar, A., & Sriram, N. (2014). Formulation and development of gliclazide microspheres for pharmaceutical evaluations. Int J Adv Pharm, 4, 83-92.

XI. Dandamudi, S. P., Chettupalli, A. K., Dargakrishna, S. P., Nerella, M., Amara, R. R., & Yata, V. K. (2022). Response surface method for the simultaneous estimation of atorvastatin and olmesartan. Trends in Sciences, 19(18), 5799-5799.

XII. Kanakagiri, D., & Chettupalli, A. K. (2022). Development of a transdermal delivery system for tacrine. South Asian Res J Pharm Sci, 4(1), 6-16.

XIII. Pawar, P. M., Solanki, K. P., & Mandali, V. A. (2018). Recent advancements in transdermal drug delivery system. Int J Pharm Clin Res, 10(3), 65-73.

XIV. Unnisa, A., Chettupalli, A. K., Alazragi, R. S., Alelwani, W., Bannunah, A. M., Barnawi, J., ... & Hussain, T. (2023). Nanostructured lipid carriers to enhance the bioavailability and solubility of ranolazine: Statistical optimization and pharmacological evaluations. Pharmaceuticals, 16(8), 1151.

XV. Avula, P. R., Chettupalli, A. K., Chauhan, V., & Jadi, R. K. (2023). Design, formulation, in-vitro and in-vivo pharmacokinetic evaluation of Nicardipine-nanostructured lipid carrier for transdermal drug delivery system. Materials Today: Proceedings.

XVI. Kumar, T. S., & Chettupalli, A. K. (2015). Statistically optimized binary ethosomal gel of Carvedilol: allevialates hypertenstion in male Wistar albino rats. Mol2Ne, 1, 1-20.

XVII. Chettupalli, A., Avula, P. R., & Chauhan, V. (2023). Improved Transdermal Delivery of Anti-hypertensive Drug Loaded Nanostructured Lipid Carriers: Statistical Design, Optimization, Depiction and Pharmacokinetic Assessment.

XVIII. Priya, S. S., Choudhury, A., Archana, N. K., Ananda, C., & Jahangir, M. A. (2023). Efficacy of Metallic Nanoparticles and Nanocarriers as an Advanced Tool for Imaging and Diagnosis: Insight into Theranostic Applications. International Journal of Biomedical Investigation, 6(2), 1-17.

XIX. Sameina, L. H., Idamakantia, S., Chettupalli, A. K., Velamala, R. R., & Ezzat, M. O. (2023). Design of mesalamine loaded micro-particles: Preparation, in vitro and in-vivo characterization. Materials Today: Proceedings.

XX. Chettupalli, A. K., Ajmera, S., Amarachinta, P. R., Manda, R. M., & Jadi, R. K. (2023). Quality by Design Approach for Preparation, Characterization, and Statistical Optimization of Naproxen Sodium-loaded Ethosomes via Transdermal Route. Current Bioactive Compounds, 19(10), 79-98.

XXI. Peddapalli, H., Sirigadi, M., Faheemuddin, M., Amara, R. R., & Chettupalli, A. K. (2021). Design, Development And Evaluation Of Antidiabetc Matrix Tablets Using Natural And Synthetic Polymers. International Journal of Pharmaceutical Research (09752366), 13(1).

XXII. Hussain, A. A. (1998). Intranasal drug delivery. Advanced Drug Delivery Reviews, 29(1-2), 39-49.

XXIII. Pontiroli, A. E. (1998). Peptide hormones: review of current and emerging uses by nasal delivery. Advanced drug delivery reviews, 29(1-2), 81-87.

XXIV. Behl, C. R., Pimplaskar, H. K., Sileno, A. P., Demeireles, J., & Romeo, V. D. (1998). Effects of physicochemical properties and other factors on systemic nasal drug delivery. Advanced drug delivery Reviews, 29(1-2), 89-116.

XXV. Illum, L. (2003). Nasal drug delivery—possibilities, problems and solutions. Journal of controlled release, 87(1-3), 187-198.

XXVI. Illum, L. (2000). Transport of drugs from the nasal cavity to the central nervous system. European journal of pharmaceutical sciences, 11(1), 1-18.

XXVII. Song, Y., Wang, Y., Thakur, R., Meidan, V. M., & Michniak, B. (2004). Mucosal drug delivery: membranes, methodologies, and applications. Critical Reviews™ in Therapeutic Drug Carrier Systems, 21(3).

XXVIII. Belgamwar, V. S., Patel, H. S., Joshi, A. S., Agrawal, A., Surana, S. J., & Tekade, A. R. (2011). Design and development of nasal mucoadhesive microspheres containing tramadol HCl for CNS targeting. Drug delivery, 18(5), 353-360.

XXIX. Chalikwar, S. S., Mene, B. S., Pardeshi, C. V., Belgamwar, V. S., & Surana, S. J. (2013). Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: design, development and ex vivo characterization. Polymer-Plastics Technology and Engineering, 52(4), 368-380.

XXX. Piao, H. M., Balakrishnan, P., Cho, H. J., Kim, H., Kim, Y. S., Chung, S. J., ... & Kim, D. D. (2010). Preparation and evaluation of fexofenadine microemulsionsfor intranasal delivery. International journal of pharmaceutics, 395(1-2), 309-316.

XXXI. Ugwoke, M. I., Agu, R. U., Verbeke, N., & Kinget, R. (2005). Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Advanced drug delivery reviews, 57(11), 1640-1665.

XXXII. Qiang, F., Shin, H. J., Lee, B. J., & Han, H. K. (2012). Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. International journal of pharmaceutics, 430(1-2), 161-166.

XXXIII. Dhakar, R. C., Maurya, S. D., Tilak, V. K., & Gupta, A. K. (2011). A review on factors affecting the design of nasal drug delivery system. International journal of drug delivery, 3(2), 194.

XXXIV. Kazi, K. M., Mandal, A. S., Biswas, N., Guha, A., Chatterjee, S., Behera, M., & Kuotsu, K. (2010). Niosome: a future of targeted drug delivery systems. Journal of advanced pharmaceutical technology & research, 1(4), 374.

XXXV. Mahale, N. B., Thakkar, P. D., Mali, R. G., Walunj, D. R., & Chaudhari, S. R. (2012). Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Advances in colloid and interface science, 183, 46-54.

XXXVI. Moghassemi, S., & Hadjizadeh, A. (2014). Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of controlled release, 185, 22-36.

XXXVII. Shahiwala, A., & Misra, A. (2002). Studies in topical application of niosomally entrapped nimesulide. J Pharm Pharm Sci, 5(3), 220-225.