Microneedles: A Novel Approach in Transdermal Drug Delivery: Review Paper
Main Article Content
Abstract
Transdermal drug delivery systems (TDDS) are a focus of drug delivery research due to their distinct advantages over oral and parenteral drug delivery systems. Researchers have focused on the use of microneedles to break through the stratum corneum barrier. The drug is delivered into the epidermis via microneedles, which do not disrupt nerve endings. This review discusses recent advances in the development of microneedles for the benefit of young scientists and to promote research in the field.Microneedles are made with a microelectromechanical system that includes silicon, metals, polymers, or polysaccharides. To pierce the superficial skin layer, solid coated microneedles can be used, followed by drug delivery. Advances in microneedle research have resulted in the development of dissolvable/degradable and hollow microneedles capable of delivering drugs at higher doses and engineering drug release. When used in conjunction with hollow microneedles, iontophoresis, sonophoresis, and electrophoresis can be used to modify drug delivery. Microneedles can deliver macromolecules like insulin, growth hormones, immunobiological, proteins, and peptides.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Ranade V.V., Hollinger M.A., Cannon J.B. Drug Delivery Systems. CRC Press; Boca Raton, FL, USA: 2003.
II. Hassan B.A.R. Overview on Drug Delivery System. Pharm. Anal. Acta. 2012;3:4172.
III. Donnelly A.D.W.R.F., Singh T.R.R., Morrow D.I.J. Microneedle-Mediated Transdermal and Intradermal Drug Delivery. John Wiley & Sons; Hoboken, NJ, USA: 2012.
IV. Singh T., Mcmillan H., Mooney K., Alkilani A., Donnelly R. Microneedles for drug delivery and monitoring. Microfluid. Devices Biomed. Appl. 2013: 185–230. doi: 10.1533/9780857097040.2.185.
V. Donnelly R.F., Singh T.R.R., Larrañeta E., McCrudde M.T.C. Microneedles for Drug and Vaccine Delivery and Patient Monitoring. John Wiley and Sons, Incorporated; Hoboken, NJ, USA: 2018.
VI. Walsh L. Microneedling: A versatile and popular treatment option. J. Aesthetic Nurs. 2019; 8: 280–284. doi: 10.12968/joan.2019.8.6.280.
VII. Reed M., Lye W.-K. Microsystems for Drug and Gene Delivery. Proc. IEEE. 2004; 92: 56–75. doi: 10.1109/JPROC.2003.820542.
VIII. Orentreich D.S., Orentreich N. Subcutaneous Incisionless (Subcision) Surgery for the Correction of Depressed Scars and Wrinkles. Dermatol. Surg. 1995;21:543–549. doi: 10.1111/j.1524-4725.1995.tb00259.x.
IX. Henry S., McAllister D.V., Allen M.G., Prausnitz M.R. Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery. J. Pharm. Sci. 1998;87:922–925. doi: 10.1021/js980042+.
X. Prausnitz M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 2004;56:581–587. doi: 10.1016/j.addr.2003.10.023.
XI. Dang N., Liu T.Y., Prow T.W. Micro and Nanotechnology in Vaccine Development. William Andrew Publishing; Norwich, NY, USA: 2017. Nano-and Microtechnology in Skin Delivery of Vaccines.
XII. Johnson A.R., Procopio A.T. Low cost additive manufacturing of microneedle masters. 3D Print. Med. 2019;5:2. doi: 10.1186/s41205-019-0039-x.
XIII. Chen Z., Lin Y., Lee W., Ren L., Liu B., Liang L., Wang Z., Jiang L. Additive Manufacturing of Honeybee-Inspired Microneedle for Easy Skin Insertion and Difficult Removal. ACS Appl. Mater. Interfaces. 2018;10:29338–29346. doi: 10.1021/acsami.8b09563.
XIV. Caudill C.L., Perry J.L., Tian S., Luft J.C., DeSimone J.M. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J. Control. Release. 2018;284:122–132. doi: 10.1016/j.jconrel.2018.05.042.
XV. Moo-Young M. Comprehensive Biotechnology. Elsevier; Amsterdam, The Netherlands: 2019.
XVI. Jacoby E., Jarrahian C., Hull H.F., Zehrung D. Opportunities and Challenges in Deliveringinfluenza Vaccineby Microneedle Patch. Elsevier; Amsterdam, The Netherlands: 2015. p. 20892.
XVII. Nair K.J. Micro-Injection Moulded Microneedles for Drug Delivery. University of Bradford; Bradford, UK: 2014.
XVIII. Kim Y.C., Park J.H., Prausnitz M.R. Microneedles for drug and vaccine delivery. Drug Deliv. Transl. Res. 2015;5:311–312. doi: 10.1016/j.addr.2012.04.005.
XIX. Waghule T., Singhvi G., Dubey S.K., Pandey M.M., Gupta G., Singh M., Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed.Pharmacother. 2018;109:1249–1258. doi: 10.1016/j.biopha.2018.10.078.
XX. Cheung K., Das D.B. Microneedles for drug delivery: Trends and progress. Drug Deliv. 2014;23:2338–2354. doi: 10.3109/10717544.2014.986309.
XXI. Donnelly R.F., Morrow D.I.J., McCrudden M.T.C., Alkilani A.Z., Vicente-Pérez E.M., O'Mahony C., González-Vázquez P., McCarron P., Woolfson A.D. Hydrogel-Forming and Dissolving Microneedles for Enhanced Delivery of Photosensitizers and Precursors. Photochem. Photobiol. 2014; 90: 641–647. doi: 10.1111/php.12209.
XXII. Zhang P., Dalton C., Jullien G.A. Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsyst. Technol. 2009; 15: 1073–1082. doi: 10.1007/s00542-009-0883-5.
XXIII. Li J., Zeng M., Shan H., Tong C. Microneedle Patches as Drug and Vaccine Delivery Platform. Curr. Med. Chem. 2017; 24: 2413–2422. doi: 10.2174/0929867324666170526124053.
XXIV. Kwon K.M., Lim S.-M., Choi S., Kim D.-H., Jin H.-E., Jee G., Hong K.-J., Kim J.Y. Microneedles: Quick and easy delivery methods of vaccines. Clin. Exp. Vaccine Res. 2017;6:156–159. doi: 10.7774/cevr.2017.6.2.156.
XXV. Demir Y.K., Akan Z., Kerimoglu O. Characterization of Polymeric Microneedle Arrays for Transdermal Drug Delivery. PLoS ONE. 2013;8:e77289. doi: 10.1371/journal.pone.0077289.
XXVI. Rodgers A.M., Cordeiro A.S., Donnelly R.F. Technology update: Dissolvable microneedle patches for vaccine delivery. Med. Devices. 2019;12:379–398. doi: 10.2147/MDER.S198220.
XXVII. Guillot A.J., Cordeiro A.S., Donnelly R.F., Montesinos M.C., Garrigues T.M., Melero A. Microneedle-Based Delivery: An Overview of Current Applications and Trends. Pharmaceutics. 2020;12:569. doi: 10.3390/pharmaceutics12060569.
XXVIII. González-Vázquez P., Larrañeta E., McCrudden M.T., Jarrahian C., Rein-Weston A., Quintanar-Solares M., Zehrung D., McCarthy H., Courtenay A.J., Donnelly R.F. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J. Control. Release. 2017;265:30–40. doi: 10.1016/j.jconrel.2017.07.032.
XXIX. Khanna P., Silva H., Bhansali S. Variation in microneedle geometry to increase shear strength. Procedia Eng. 2010;5:977–980. doi: 10.1016/j.proeng.2010.09.272.
XXX. Gittard S.D., Chen B., Xu H., Ovsianikov A., Chichkov B., Monteiro-Riviere N., Narayan R.J. The effects of geometry on skin penetration and failure of polymer microneedles. J. Adhes. Sci. Technol. 2013;27:227–243. doi: 10.1080/01694243.2012.705101.
XXXI. Donnelly R.F., Majithiya R., Singh R.R.T., Morrow D.I.J., Garland M.J., Demir Y.K., Migalska K., Ryan E., Gillen D., Scott C.J., et al. Design, Optimization and Characterisation of Polymeric Microneedle Arrays Prepared by a Novel Laser-Based Micromoulding Technique. Pharm. Res. 2011;28:41–57. doi: 10.1007/s11095-010-0169-8.
XXXII. Davis S.P., Landis B.J., Adams Z.H., Allen M.G., Prausnitz M.R. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J. Biomech. 2004;37:1155–1163. doi: 10.1016/j.jbiomech.2003.12.010.
XXXIII. Park J.-H., Prausnitz M.R. Analysis of mechanical failure of polymer microneedles by axial force. J. Korean Phys. Soc. 2010;56:1223–1227. doi: 10.3938/jkps.56.1223.
XXXIV. Lutton R.E.M., Moore J., Larrañeta E., Ligett S., Woolfson A.D., Donnelly R.F. Microneedle characterisation: The need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv. Transl. Res. 2015;5:313–331. doi: 10.1007/s13346-015-0237-z.
XXXV. Donnelly R.F., Majithiya R., Singh R.R.T., Morrow D.I.J., Garland M.J., Demir Y.K., Migalska K., Ryan E., Gillen D., Scott C.J., et al. Design, Optimization and Characterisation of Polymeric Microneedle Arrays Prepared by a Novel Laser-Based Micromoulding Technique. Pharm. Res. 2011;28:41–57. doi: 10.1007/s11095-010-0169-8.
XXXVI. Park J.-H., Yoon Y.-K., Choi S.-O., Prausnitz M.R., Allen M.G. Tapered Conical Polymer Microneedles Fabricated Using an Integrated Lens Technique for Transdermal Drug Delivery. IEEE Trans. Biomed. Eng. 2007;54:903–913. doi: 10.1109/TBME.2006.889173.
XXXVII. Jun H., Ahn M.-H., Choi I.-J., Baek S.-K., Park J.-H., Choi S.-O. Immediate separation of microneedle tips from base array during skin insertion for instantaneous drug delivery. RSC Adv. 2018;8:17786–17796. doi: 10.1039/C8RA02334D.
XXXVIII. Khan S., Minhas M.U., Tekko I.A., Donnelly R., Thakur R.R.S. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery. Drug Deliv. Transl. Res. 2019;9:764–782. doi: 10.1007/s13346-019-00617-2.
XXXIX. Griffiths C.A. Micro Injection Moulding: Tooling and Process Factors. Cardiff University; Cardiff, UK: 2008.
XL. Armani D., Liu C., Alum N. Re-configu le fluid circuits by PDMS Elastomer Micromachinig; Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems; Orlando, FL, USA. 21 January 1999; pp. 222–227.
XLI. Lhernould M.S., Deleers M., Delchambre A. Hollow polymer microneedles array resistance and insertion tests. Int. J. Pharm. 2015;480:152–157. doi: 10.1016/j.ijpharm.2015.01.019.
XLII. Sammoura F., Kang J., Heo Y.-M., Jung T., Lin L. Polymeric microneedle fabrication using a microinjection molding technique. Microsyst. Technol. 2006;13:517–522. doi: 10.1007/s00542-006-0204-1.
XLIII. Odujole J.I., Desai S. Molecular dynamics investigation of material deformation behavior of PMMA in nanoimprint lithography. AIP Adv. 2020;10:095102. doi: 10.1063/5.0014458.
XLIV. Khuen H.W., Lay L.L., Schaper C. On control of resist film uniformity in the microlithography process. IFAC Proc. Vol. 2002;35:19–24. doi: 10.3182/20020721-6-ES-1901.01154.
XLV. Tran K.T., Nguyen T.D. Lithography-based methods to manufacture biomaterials at small scales. J. Sci. Adv. Mater. Devices. 2017;2:1–14. doi: 10.1016/j.jsamd.2016.12.001.
XLVI. Desai S., Craps M., Esho T. Direct writing of nanomaterials for flexible thin-film transistors (fTFTs) Int. J. Adv. Manuf. Technol. 2012;64:537–543. doi: 10.1007/s00170-012-4425-4.
XLVII. Zheng H., Lam Y., Sundarraman C., Tran D. Influence of substrate cooling on femtosecond laser machined hole depth and diameter. Appl. Phys. A. 2007;89:559–563. doi: 10.1007/s00339-007-4132-4.
XLVIII. Lutton R., Larrañeta E., Kearney M.-C., Boyd P., Woolfson A., Donnelly R.F. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int. J. Pharm. 2015;494:417–429. doi: 10.1016/j.ijpharm.2015.08.049.
XLIX. Amsden B.G., Goosen M.F.A. Transdermal delivery of peptide and protein drugs: An overview. AIChE J. 1995;41:1972–1997. doi: 10.1002/aic.690410814.
L. Williams A.C., Barry B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2012;64:128–137. doi: 10.1016/j.addr.2012.09.032.
LI. Jeong H.R., Lee H.S., Choi I.J., Park J.H. Considerations in the use of microneedles: Pain, convenience, anxiety and safety. J. Drug Target. 2017;25:29–40. doi: 10.1080/1061186X.2016.1200589.
LII. Ramadon D., McCrudden M.T.C., Courtenay A.J., Donnelly R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2021:1–34. doi: 10.1007/s13346-021-00909-6.
LIII. Henry S., McAllister D.V., Allen M.G., Prausnitz M.R. Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery. J. Pharm. Sci. 1998;87:922–925. doi: 10.1021/js980042+.
LIV. Matriano J.A., Cormier M., Johnson J., Young W.A., Buttery M., Nyam K., Daddona P.E. Macroflux® Microprojection Array Patch Technology: A New and Efficient Approach for Intracutaneous Immunization. Pharm. Res. 2002; 19: 63–70. doi: 10.1023/A:1013607400040.
LV. Stahl J., Wohlert M., Kietzmann M. Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points. BMC Pharmacol. Toxicol. 2012;13:5. doi: 10.1186/2050-6511-13-5.
LVI. Chen J., Wise K.D., Hetke J.F., Bledsoe S.C. A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 1997;44:760–769. doi: 10.1109/10.605435.
LVII. Marshall S., Sahm L.J., Moore A. The success of microneedle-mediated vaccine delivery into skin. Hum. Vaccines Immunother. 2016;12:2975–2983. doi: 10.1080/21645515.2016.1171440.
LVIII. Edens C., Dybdahl-Sissoko N.C., Weldon W.C., Oberste M.S., Prausnitz M.R. Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine. 2015;33:4683–4690. doi: 10.1016/j.vaccine.2015.01.089.
LIX. Hiraishi Y., Nandakumar S., Choi S.-O., Lee J.W., Kim Y.-C., Posey J.E., Sable S.B., Prausnitz M.R. Bacillus Calmette-Guérin vaccination using a microneedle patch. Vaccine. 2011;29:2626–2636. doi: 10.1016/j.vaccine.2011.01.042.
LX. Van Damme P., Oosterhuis-Kafeja F., van der Wielen M., Almagor Y., Sharon O., Levin Y. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine. 2009;27:454–459. doi: 10.1016/j.vaccine.2008.10.077.
LXI. Zhu J., Zhou X., Libanori A., Sun W. Microneedle-based bioassays. Nanoscale Adv. 2020;2:4295–4304. doi: 10.1039/D0NA00543F.
LXII. Kim J.-Y., Han M.-R., Kim Y.-H., Shin S.-W., Nam S.-Y., Park J.-H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2016;105:148–155. doi: 10.1016/j.ejpb.2016.06.006.
LXIII. Sharma S., Hatware K., Bhadane P., Sindhikar S., Mishra D.K. Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies. Mater. Sci. Eng. C. 2019;103:109717. doi: 10.1016/j.msec.2019.05.002.
LXIV. Park Y.-H., Ha S.K., Choi I., Kim K.S., Park J., Choi N., Kim B., Sung J.H. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnol. Bioprocess Eng. 2016;21:110–118. doi: 10.1007/s12257-015-0634-7.
LXV. Kumar A., Naguib Y., Shi Y.-C., Cui Z. A method to improve the efficacy of topical eflornithine hydrochloride cream. Drug Deliv. 2016;23:1495–1501. doi: 10.3109/10717544.2014.951746.
LXVI. Aust M.C., Knobloch K., Reimers K., Redeker J., Ipaktchi R., Altintas M.A., Gohritz A., Schwaiger N., Vogt P.M. Percutaneous collagen induction therapy: An alternative treatment for burn scars. Burns. 2010;36:836–843. doi: 10.1016/j.burns.2009.11.014.