Water and Electrolyte Disturbances in Diabetes Insipidus & Their Biochemical Relationship

Main Article Content

Alyi Alejandro Arellano
Sofia Castilla Paso
Johamet Alonso Cerchar
Emanuel Alexis
María Juliana Ibarra

Abstract





Antidiuretic hormone is released by the pituitary gland, and is responsible for regulating water absorption at the distal nephron level, specifically in the renal collecting tubule. This occurs by binding to its type 2 receptor which generates the induction of aqueous channels towards the basolateral membrane of the main cells of the kidney. When diabetes insipidus occurs, patients have a state of decreased secretion or peripheral resistance of this hormone in its receptor, so that water is not reabsorbed, it is abundantly eliminated and this generates hydroelectrolyte imbalances. This article will review the biology of the antidiuretic hormone, physiology, hydroelectrolytic alterations and based on the understanding of the altered mechanisms, its association with the management of diabetes insipidus.





Article Details

How to Cite
Alyi Alejandro Arellano, Sofia Castilla Paso, Johamet Alonso Cerchar, Emanuel Alexis, & María Juliana Ibarra. (2023). Water and Electrolyte Disturbances in Diabetes Insipidus & Their Biochemical Relationship. International Journal of Pharmaceutical and Bio Medical Science, 3(09), 490–494. https://doi.org/10.47191/ijpbms/v3-i9-07
Section
Articles

References

I. Luis Velásquez-Jones, Mara Medeiros-Domingo, Nephrogenic diabetes insipidus, Medical Bulletin of the Children's Hospital of Mexico, Volume 71, Issue 6,2014, Pages 332-338, ISSN 1665-1146,

https://doi.org/10.1016/j.bmhimx.2015.01.004. (https://www.sciencedirect.com/science/article/pii/S166511461 5000052)

II. De Mejorado, F. J. (2021). Diabetes insipidus. Diagnostic and therapeutic approach. Revista Española De Endocrinología Pediátrica, 12. https://doi.org/10.3266/RevEsp EndocrinolPediatr.pre2021.Apr .644

III. D. Bockenhauer, D.G. Bichet Urinary concentration: different ways to open and close the tap Pediatr Nephrol., 29 (2014), pp. 1297-1303.

IV. R. Rugpolmuang, A. Deeb, Y. Hassan, T. Deekajorndech, V. Shotelerskuk, T. Sahakitrungruang Novel AQP2 mutation causing congenital nephrogenic diabetes insipidus: challenges in management during infancy J Pediatr Endocrinol Metab., 27 (2014), pp. 193-197.

V. S. Patra, G. Nadri, H. Chowdhary, H.K. Pemde, V. Singh, J. Chandra A case report of nephrogenic diabetes insipidus with idiopathic Fanconi syndrome in a child who presented with vitamin D resistant rickets J Pediatr Endocrinol Metab., 27 (2014), pp. 573-575.

VI. C.R. Hong, H.G. Kang, H.J. Choi, M.H. Cho, J.W. Lee, J.H. Kang, et al. Lee, J.H. Kang, et al. X-linked recessive recessive nephrogenic diabetes insipidus: a clinico-genetic study J Pediatr Endocrinol Metab., 27 (2014), pp. 93-99.

VII. H.B. Moeller, S. Rittig, R.A. Fenton Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment Endocr Rev, 34 (2013), pp. 278-301.

VIII. A.S. Verkman Aquaporins in clinical medicine Annu Rev Med., 63 (2012), pp. 303-316.

IX. A.S. Verkman, M.O. Anderson, M.C.Papadopoulos Aquaporins: important but elusive drug targets Nat Rev Drug Discov., 13 (2014), pp. 259-277.

X. From Muglia LJ, Srivasta A, Majzoub JA: Disorders of the posterior pituitary. In Sperling MA, editor: Pediatric endocrinology, ed 4, Philadelphia, 2014, Elsevier, Fig. 11.6).

XI. Argente J, Soriano-Guillén L. Manual de Endocrinología Pediátrica (2nd Edition). Madrid: Editorial Ergón 2014.

XII. Di Iorgi N, Napoli F, Allegri AE, et al. Diabetes insipidus-- diagnosis and management. Horm Res Paediatr. 2012; 77(2): 69-84.

XIII. Christ-Crain M, Bichet DG, Fenske WK, et al. Diabetes insipidus. Nat Rev Dis Primers. 2019;5(1):54. doi: https://doi.org/10.1038/s41572- 019-0103-2.

XIV. Dabrowski E, Kadakia R, Zimmerman D. Diabetes insipidus in infants and children. Best Pract Res Clin Endocrinol Metab. 2016;30(2):317-28.

XV. Patti G, Ibba A, Morana G, et al. Central diabetes insipidus in children: Diagnosis and management. Best Pract Res Clin EndocrinolMetab. 2020;34(5):101440.

doi: https://doi.org/10.1016/j.beem. 2020.10144.

XVI. Lamas C, del Pozo C, Villabona C, Neuroendocrinology Group of the SEEN. Clinical guidelines for management of diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion after pituitary surgery. Endocrinol Nutr. 2014 Apr;61(4): e15-24.

XVII. Dabrowski E, Kadakia R, Zimmerman D. Diabetes insipidus in infants and children. Best Pract Res Clin Endocrinol Metab. 2016 Mar;30(2):317-28.

XVIII. Vela Desojo A, Rica Etxebarría I, Aguayo Calcena A, Jiménez Huertas P, MArtul Tobío P. Diabetes Insipidus. In: Advances in Pediatric Endocrinology, 16th Postgraduate Training Course of the Spanish Society of Pediatric Endocrinology, 2017, p. 1-14. ISBN: 978-84-95182- 202-20-3.

XIX. Concha A, Rey C, Medina A. Inadequate antidiuretic hormone secretion. Diabetes insipidus. Cerebral salt wasting syndrome. In: López-Herce J, Calvo C, Rey C, Rodríguez A. Manual de Cuidados Intensivos Pediátricos (5th ed.) ISBN: 978- 84-09-10203-7. P. 328-33.

XX. Polyuria. Hypernatremia (diabetes insipidus). In: Emergencies and treatment of the critically ill child (3rd ed.) p. 1386-90. ISBN:978-84-15950- 72-1.

XXI. Kavanagh C, Uy NS. Nephrogenic Diabetes Insipidus. Pediatr. Clin. N. Am. 2019; 66 (1): 227-234.

XXII. Refardt J. Diagnosis and differential diagnosis of diabetes insipidus: update. Best Pract. Clin. Endocrinol. Metab. 2020; 101398

XXIII. Tuli et al. Copeptin role in polyuria -polydipsia syndrome (PPS) differential diagnosis and reference range in childhood. Clin. Endrocrinol (Oxf). 2018; 88 (6): 873-879.

XXIV. Desmopressin. In Medimecum 2019: Guide to drug therapy (24th ed.) ISBN: 978- 84- 946234-4-8. P 589.

XXV. B. Mouillac, C. Mendre Vasopressin receptors and pharmacological chaperones: from functional rescue to promising therapeutic strategies Pharmacol Res., 83 (2014), pp. 74-78.