The Impact of Perennial Covers on Soil Microbiome and Nutrient Dynamic

Main Article Content

Narmin Najafzadeh

Abstract

Our study discusses the impact of different cropping practices on soil health indicator and crop yield. The combination of no fertilization and perennialization enhanced soil health indicators and crop yield compared to conventional tillage annual crop fallow. The results showed that excessive nitrogen fertilization increases soil bulk density, while perennialization with no fertilizer added improves it. Higher carbon content was recorded under corn cultivation, but higher carbon-to-nitrogen ratio was shown in perennial covers. The study highlights the benefits of adopting perennial crops without fertilization for soil health and suggests improved management practices for sustainable agriculture.


Our finding is particularly significant as it suggests an alternative approach to farming that improve soil health while reducing the reliance on synthetic fertilizer. It provides valuable insights for farmers, policymakers, and researches enabling them to make informed decisions and implement practices that support both productivity and environmental stewardship, Overall, it underscores the importance of responsible fertilizer use and improved management practices for maintaining soil fertility and promoting sustainable agriculture system.

Article Details

How to Cite
Najafzadeh , N. . (2023). The Impact of Perennial Covers on Soil Microbiome and Nutrient Dynamic. International Journal of Pharmaceutical and Bio Medical Science, 3(09), 447–453. https://doi.org/10.47191/ijpbms/v3-i9-02
Section
Articles

References

I. Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. Global Change Biology Bioenergy, 1, 75-96.

II. Amanullah, A.; Iqbal, A.; Ali, S.; Fahad, S.; Parmar, B. Nitrogen source and rate management improve maize productivity of smallholders under semiarid climates. Front. Plant Sci. 2016, 7, 1773.

III. Ashworth, A. J., Allen, F. L., Debruyn, J. M., Owens, P. R., & Sams, C. (2018). Crop rotation and poultry litter affect dynamic soil chemical properties and soil biota long term. Journal of Environmental Quality, 47, 1327–1338.

https://doi.org/10.2134/jeq2017.12.0465.

IV. Balota, E. L., Calegari, A., Nakatani, A. S., & Coyne, M. S. (2014). Ben-efits of winter cover crops and no-tillage for microbial parameters ina Brazilian Oxisol: A long-term study.Agriculture, Ecosystems andEnvironment,197, 31–40.

https://doi.org/10.1016/j.agee.2014.07.010.

V. Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47:151–163.

VI. Bisht, N., Chauhan, P. (2020). “Excessive and disproportionate use of chemical cause soil contamination and nutrient sress”.

DOI: 10.5772/intechopen.94593.

VII. Blanco-Canqui H, Lal R (2007) Soil and crop response to harvesting corn residues for biofuel production. Geoderma, 141, 355-362.

VIII. Chen J., Larke P., Jorgensen U. 2022. “Land conversion from annual to perennial crops: A win-win strategy for biomass yield and soil organic carbon and total nitrogen sequestration”. Agriculture, Ecosystems &Environment, https://doi.org/10.1016/j.agee.2022.107907.

IX. Dinca, L., Grenni, P., Onet, C., Onet, A. (2022). “Fertilization and soil microbial community: A review”. Appl. Sci. 2022, 12(3), 1198; https://doi.org/10.3390/app12031198

X. Ellert, B.H., H.H. Janzen, and T. Entz. 2002. Assessment of a method to measure temporal change in soil carbon storage. Soil Sci. Soc. Am. J. 66:1687–1695.

XI. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. NatureGeoscience. 2008;1:636–639. doi: 10.1038/ngeo325.

XII. Farmah, B., Sekaran, U., Franzluebbers, A. (2021). “Cover cropping and conservation tillage improve soil health in the southeastern united states”. https://doi.org/10.1002/agj2.20865

XIII. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature 478, 337–342.

doi: 10.1038/nature10452

XIV. Hochmuth, G.J. Progress in mineral nutrition and nutrient management for vegetable crops in the last 25 years. Hortscience 2003, 38, 999–1003.

XV. Hussain, S., khan, F., Cao, W., Wu, L., and Geng, M. (2016). Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front. Plant Sci. 7:439. doi: 10.3389/fpls.2016.00439

XVI. Islam M. R., Hossain M. B., Siddique A. B., Rahman M. T., Malika M. (2015). Contribution of green manure incorporation in combination with nitrogen fertilizer in rice production. SAARC J. Agric. 12 134–142. 10.3329/sja.v12i2.21925.

XVII. Knapp, S., van der Heijden, M.G.A., (2018). A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632. https://doi.org/10.1038/s41467-018-05956-1.

XVIII. L A, P K, G SB (2016) Evaluation of Spirulina platensis as microbial inoculants to enhanced protein levels in Amaranthus gangeticus. African J Agric Res 11:1353–1360.

https://doi.org/10.5897/ajar2013.7953.

XIX. Ledo, A., Smith, P., Zerihun, A., Whitaker, J., Vicente-Vicente, J. L., Qin, Z., McNamara, N. P., Zinn, Y. L., Llorente, M., Liebig, M., Kuhnert, M., Dondini, M., Don, A., Diaz-Pines, E., Datta, A., Bakka, H., Aguilera, E., & Hillier, J. (2020). Changes in soil organic carbon under perennial crops. Global Change Biology, 26(7), 4158–4168.

XX. Liu, Q.; Xu, H.; Yi, H. Impact of Fertilizer on Crop Yield and C:N:P Stoichiometry in Arid and Semi-Arid Soil. Int. J. Environ. Res. Public Health 2021, 18, 4341. [Google Scholar] [CrossRef] [PubMed]

XXI. Mirbakhsh, M. (2023). Role of Nano-fertilizer in Plants Nutrient Use Efficiency (NUE). J Gene Engg Bio Res, 5(1), 75-81.

XXII. Mirbakhsh M, Sohrabi Sedeh SS, Zahed Z. (2023). The impact of Persian clover (Trifolium resupinatum L.) on soil health. BSJ Agri, 6(5): 564-570.

XXIII. Nawaz, J., Hussain, M., Jabbar, A., Nadeem G., Sajad, M., Subtain, M. (2013). “Seed priming a technique”. International Journal of Agriculture and Crop Sciences. IJACS/2013/6-20/1373-1381.

XXIV. Niu, Z., An, F., Su, Y., Liu, T., Yang, Rong, Du, Zeyu., Chen, sh. (2022). “Effect of long-term fertilization on aggregate size distribution and nutrient accumulation in Aeolian sandy soil”. Plant (Base), 2022 Apr; 11(7):909.

doi: 10.3390/plants11070909.

XXV. Norris, C. E., Bean, G. M., Cappellazzi, S. B., Cope, M., Greub, K. L. H., Liptzin, D., Rieke, E. L., Tracy, P. W., Morgan, C. L. S., & Honeycutt, C. W. (2020). Introducing the North American project to evaluate soil health measurements. Agronomy Journal, 112, 3195–3215. https://doi.org/10.1002/agj2.20234.

XXVI. Skorupka, M.; Nosalewicz, A. Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops. Agriculture 2021, 11, 822.

XXVII. Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266.

XXVIII. Stewart, R.E. Fertilizer. Encyclopedia Britannica. Available online: https://www.britannica.com/topic/fertilizer (accessed on 18 March 2022).

XXIX. Sun R. B., Zhang X. X., Guo X. S., Wang D. Z., Chu H. Y. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 88, 9–18. 10.1016/j.soilbio.2015.05.007.

XXX. Tarkalson, D. D., Hergert, G. W., & Cassman, K. G. (2006). Long-term effects of tillage on soil chemical properties and grain yields of a dryland winter wheat-sorghum/corn-fallow rotation in the Great Plains. Agronomy Journal, 98, 26–33.

https://doi.org/10.2134/agronj2004.0240.

XXXI. Uchida, R. (2000) Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. In: Silva, J.A. and Uchida, R., Eds., Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, 31-55.

XXXII. Wang, X.; Zou, C.; Gao, X.; Guan, X.; Zhang, W.; Zhang, Y.; Shi, X.; Chen, X. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis. Environ. Pollut. 2018, 239, 375–383

XXXIII. Wang, Y., Liu, B., Ren, T., Li, X., Cong, R., Zhang, M., et al. (2014). Establishment method affects oilseed rape yield and the response to nitrogen fertilizer. Agron. J. 106, 131–142.

doi: 10.2134/agronj2013.0374

XXXIV. Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed][Green Version]

XXXV. Zeng J., Liu X., Song L., Lin X., Zhang H., Shen C., et al. (2016). Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49. 10.1016/j.soilbio.2015.09.018.

XXXVI. Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable

development. Nature 2015, 15, 91.