The Antimicrobial of Selenium Nanoparticles and Combination with Cinnamon Oil Against Salmonella Typhi Which Cause Diarrhea in Human

Main Article Content

Noora M. AL-Roomi
Hameedah Ajeel

Abstract

Many bacterial species can cause diseases in humans, such as the bacteria that cause diarrhea as a result of having genetic characteristics that can form pathogenic factors, which help the bacterium to produce harmful effects in the host's body. From (60) fecal samples of diarrheal cases of human, Salmonella spp.42(70%) where Salmonella typhi consist29(48.33%) isolates and Salmonella paratyphi consist13(21.67%) isolates, E. coli 10(16,66%), Enterobacter 4(6,66%) and Shigella 4(6,66%). On Congo red agar (CRA) plates, among (29) S. typhi bacterial isolates from human, all the isolates (100%) were showed biofilm formation through formation of brown colonies with a dry crystalline quality. Antibiotic susceptibility profile of Salmonella typhi. isolated from fecal sample of human were determined by using Vitek2 system, the results revealed that Salmonella typhi were100% resistant to Ticarcillin and 89.7% to Aztreonam while the rest of the antibiotics were less resistant. Selenium nanoparticles (Se-NPs) are green synthesized using cinnamon extract. The antibacterial activity of the cinnamic ethanolic extract and synthesized SeNPs was investigated against isolates of human source Salmonella typhi by using the agar well diffusion method and tested by using different concentrations (25,50,100 μg/mL).According to the data, cinnamon extract only produced an inhibition of 10.66 mm at the same dose of 100 mg/ml, but Se-NPs produced a good inhibition at that concentration of 14.33 mm.

Article Details

How to Cite
AL-Roomi, N. M. ., & Ajeel, H. (2023). The Antimicrobial of Selenium Nanoparticles and Combination with Cinnamon Oil Against Salmonella Typhi Which Cause Diarrhea in Human. International Journal of Pharmaceutical and Bio Medical Science, 3(09), 484–489. https://doi.org/10.47191/ijpbms/v3-i9-06
Section
Articles

References

I. SharifL, Jobedient and F A—Ani,(2005),Risk factors for lamband kid mortality in sheep and goat farm in Jordan .Bulgarian J.Vet .Med.,8:99_108.

II. Singh A, Chhabra R, Sikrodia S, Shukla S, Sharda R, Audarya S (2018). Isolation of E. coli from Bovine Mastitis and their Antibiotic Sensitivity Pattern. Int. J. Curr. Microbiol. App. Sci. 7(10): 11-18.

III. Van Houdt, R., and Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109, 1117–1131. doi:10.1111/j.1365-2672.2010.04756.x

IV. Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, Y., Qiu, J., Guan, X and Huan, T. (2020). Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol, Sec. Microbiotechnology ,Volume 11,

V. Mettler, S., Schwarz, I. and Colombani, P. C. (2009) ‘Additive postprandial blood glucose–attenuating and satiety-enhancing effect of cinnamon and acetic acid’, Nutrition research, 29(10):723–727..‏

VI. Shen, Yan,Jia, Liu-Nan,Honma, Natsumi,Hosono, Takashi,Ariga, Toyohiko,Seki, andTaiichiro (2012) ‘Beneficial effects of cinnamon on the metabolic syndrome, inflammation, and pain, and mechanisms underlying these effects–a review’, Journal of traditional and complementary medicine, 2(1):27–32.

VII. Barabadi, H.Vahidi, K.Damavandi kamali, M.Rashedi, and m.Saravanan(2020). Antineoplastic biogenic silver nanomaterials to combat cervical cancer: a novel approach in cancer therapeutics, Journal of Cluster Science, 31(4):659–667.

VIII. Al-Garadi, M. A., Qaid, M. M., Alqhtani, A. H., Alhajj, M. S., Al-abdullatif, A. A., & Al-Mufarrej, S. I. (2023). In vitro antimicrobial efficacy assessment of ethanolic and aqueous extracts of cinnamon (Cinnamomum Verum) bark against selected microbes. Brazilian Journal of Poultry Science, 25.‏

IX. Gunti, L., Dass, R. S., & Kalagatur, N. K. (2019). Phytofabrication of Selenium Nanoparticles From Emblica officinalis Fruit Extract and Exploring Its Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility. Frontiers in Microbiology, 10.

X. CLSI. (2022). Performance standards for antimicrobial susceptibility testing. 32nd informational supplement, Clinical and Laboratory Standard Institute. Wayne PA.

XI. Son, K., Lee, W. S., & Lee, K. B. (2021). Effect of different software programs on the accuracy of dental scanner using three-dimensional analysis. International Journal of Environmental Research and Public Health, 18(16), 8449.‏

XII. European Centre for Disease Prevention Control. (2013). Annual Epidemiological Report Reporting on 2011 Surveillance Data and 2012 Epidemic Intelligence Data. 103–108

XIII. Kaabi, H. K. J. A., & AL-Yassari, A. K. S. (2019). 16SrRNA sequencing as tool for identification of Salmonella spp isolated from human diarrhea cases. In Journal of Physics: Conference Series (Vol. 1294, No. 6:062041). IOP Publishing.‏

XIV. Hassan, A., Yousif, M. H., Abd-Elkhaliq, H. M. M., Wahba, A. K. A., & El-Hamaky, A. M. A. (2021). The antimicrobial potential of selenium nanoparticles singly and in combination with cinnamon oil against fungal and bacterial causes of diarrhea. Adv. Anim. Vet. Sci, 9(8), 1238-1248.‏

XV. Flemming H.-C. (2016). Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14), 563.

XVI. Khatoon Z., McTiernan C., Suuronen E., Mah T., Alarcon E. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4 (12), e01067.

XVII. Hanna, A., Berg, M., Stout, V., & Razatos, A. (2003). Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Applied and environmental microbiology, 69(8), 4474-4481.

XVIII. Murugan, S., Devi, P. U., & John, P. N. (2011). Antimicrobial susceptibility pattern of biofilm producing Escherichia coli of urinary tract infections. Current Research in bacteriology, 4(2), 73-80.

XIX. Mahdi, L., Musafer, H., Zwain, L., Salman, I., Al-Joofy, I., Rasool, K.,& Taher, N. (2017). Two novel roles of buffalo milk lactoperoxidase, antibiofilm agent and immunomodulatory against multidrug resistant Salmonella enterica serovar typhi and Listeria monocytogenes. Microbial Pathogenesis, 109, 221-227.‏

XX. Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature reviews microbiology, 13(5), 269-284.

XXI. Zahran, S. I., Bkheet, A. A., & Torky, H. A. (2020). Salmonella Species Isolated from Different Sources with Special Reference to Biofilm Formation. Alexandria Journal for Veterinary Sciences, 64(2).‏

XXII. Farha, A. K., Sui, Z., & Corke, H. (2023). Raspberry Ketone-Mediated Inhibition of Biofilm Formation in Salmonella enterica Typhimurium An Assessment of the Mechanisms of Action. Antibiotics, 12(2), 239.

XXIII. Flemming H. C., Wuertz S. (2019). Bacteria and archaea on Earth and their abundance in biofilm. Nat. Rev. Microbiol. 17), 247–260.

XXIV. Salman, H. A., Abdulmohsen, A. M., Falih, M. N., & Romi, Z. M. (2021). Detection of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhi isolated from Iraqi subjects. Veterinary world, 14(7), 1922.‏

XXV. Siourimè, S. N., Isidore, B. O. J., Oumar, T., Nestor, B. I. H., Yves, T., Nicolas, B., & Aly, S. (2017). Serotyping and antimicrobial drug resistance of Salmonella isolated from lettuce and human diarrhea samples in Burkina Faso. African journal of infectious diseases, 11(2), 24-30.‏

XXVI. Meini, S., Tascini, C., Cei, M., Sozio, E., & Rossolini, G. M. (2019). AmpC β-lactamase-producing Enterobacterales: what a clinician should know. Infection, 47, 363-375.‏

XXVII. Zervosen, A., Sauvage, E., Frere, J.M., Charlier, P. and Luxen, A. (2012). 'Development of new drugs for an old target: the penicillin binding proteins', Molecules (Basel, Switzerland), 17(11), pp. 12478-12505.

XXVIII. Konaklieva, M.I. (2014). 'Molecular Targets of β-Lactam-Based Antimicrobials: Beyond the Usual Suspects', Antibitics, 3(2):128-148.

XXIX. Breidenstein, E.B., de la Fuente-Nunez, C. and Hancock, R.E. (2011). 'Pseudomonas aeruginosa: all roads lead to resistance', Trends in microbiology, 19(8),419-426.

XXX. Fernández, J., Guerra, B., & Rodicio, M. R. (2018). Resistance to carbapenems in non-typhoidal Salmonella enterica serovars from humans, animals and food. Veterinary sciences, 5(2), 40.‏

XXXI. Verma, T., Aggarwal, A., Singh, S., Sharma, S., & Sarma, S. J. (2022). Current challenges and advancements towards discovery and resistance of antibiotics. Journal of Molecular Structure, 1248, 131380.‏

XXXII. Fardsanei, F., Nikkhahi, F., Bakhshi, B., Salehi, T. Z., Tamai, I. A., & Dallal, M. S. (2016). Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling,(GTG) 5-PCR and ERIC-PCR. New microbes and new infections, 14, 24-30.‏

XXXIII. Shirshikova, T. V., Sierra-Bakhshi, C. G., Kamaletdinova, L. K., Matrosova, L. E., Khabipova, N. N., Evtugyn, V. G., ... & Bogomolnaya, L. M. (2021). The ABC-type efflux pump MacAB is involved in protection of Serratia marcescens against aminoglycoside antibiotics, polymyxins, and oxidative stress. Msphere, 6(2), e00033-21.‏

XXXIV. Kuang, D., Zhang, J., Xu, X., Shi, W., Chen, S., Yang, X., ... & Meng, J. (2018). Emerging high-level ciprofloxacin resistance and molecular basis of resistance in Salmonella enterica from humans, food and animals. International journal of food microbiology, 280, 1-9.‏

XXXV. Lugito, N. P. H. (2017). Antimicrobial resistance of Salmonella enterica serovars Typhi and Paratyphi isolates from a general hospital in Karawaci, Tangerang, Indonesia: A five-year review. International Journal of Microbiology, 2017.‏

XXXVI. Stabnikova, O., Khonkiv, M., Kovshar, I., & Stabnikov, V. (2023). Biosynthesis of selenium nanoparticles by lactic acid bacteria and areas of their possible applications. World Journal of Microbiology and Biotechnology, 39(9), 1-20.‏

XXXVII. Rana, A., Pathak, S., Lim, D. K., Kim, S. K., Srivastava, R., Sharma, S. N., & Verma, R. (2023). Recent Advancements in Plant-and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS Applied Nano Materials, 6(10), 8106-8134.‏