Resistance of Clinical Isolates of Escherichia coli and Klebsiella pneumoniae in “Boucle du Mouhoun, Burkina Faso”: one year's Experience in Antibiotic Resistance Surveillance

Main Article Content

Kafando H.
Zangréyanogo H.
Dionou P.
Bayala D.
Seihon M.
Traoré N.
Barro M.
Dipama S.
Nikiema G.
Ramdé D.
Ouédraogo A-S.

Abstract

Introduction: Escherichia coli and Klebsiella pneumoniae account for a large proportion of clinically isolated pathogenic bacteria. However, their resistance to antibiotics is increasingly becoming a global health threat. The aim of this study was to describe the current antibiotic resistance profile of these two species.


Materials and method: This was a retrospective descriptive study at the Dedougou regional hospital. The results of antibiotics susceptibility testing of non-redundant clinical isolates of Enterobacteriaceae were used. Bacteria were isolated and identified using standard bacteriology methods. The antibiogram was performed by the Kirby-Bauer method and the interpretation was made according to the recommendations of the Antibiogram Committee of the French Microbiology Society (CASFM 2017). Data were entered into WHOnet 2018 and analysed using EPI-INFO 7.2.4.0.


Results: A total of 138 non-redundant Enterobacteriaceae strains were isolated, of which almost 90% were E. coli (75.4%) and Klebsiella pneumoniae (13.8%). The most frequent resistance was observed with amoxicillin + clavulanic acid (81.3%), ceftriaxone (66.7%) and cotrimoxazole (82.9%). E. coli showed very high resistance to ampicillin (95.2%). Relatively moderate to high resistance was also observed with ciprofloxacin 69.1% and gentamicin 39%. The most active antibiotics were imipenem and cefoxitin, with resistance frequencies of 2.4% and 5.7% of all strains respectively. ESBL-producing strains were the most frequently encountered phenotypes (59.3%), followed by high-level penicillinases (19.5%). 3GC resistance was associated to ESBL production in almost 90% of cases, and both ciprofloxacin and gentamicin resistance were significantly associated with 3GC resistance (p<0.001).


Conclusion: Escherichia coli and Klebsiella pneumoniae are the main enterobacteria isolated in clinics. The production of extended-spectrum beta-lactamases is their main mechanism of resistance to beta-lactam antibiotics.

Article Details

How to Cite
Kafando H., Zangréyanogo H., Dionou P., Bayala D., Seihon M., Traoré N., Barro M., Dipama S., Nikiema G., Ramdé D., & Ouédraogo A-S. (2023). Resistance of Clinical Isolates of Escherichia coli and Klebsiella pneumoniae in “Boucle du Mouhoun, Burkina Faso”: one year’s Experience in Antibiotic Resistance Surveillance. International Journal of Pharmaceutical and Bio Medical Science, 3(8), 404–409. https://doi.org/10.47191/ijpbms/v3-i8-04
Section
Articles

References

I. Savadogo M, Diallo I, Diendéré AE, Sondo KA, Sawadogo A. Les sepsis observés au service des maladies infectieuses du CHU Yalgado Ouédraogo de Ouagadougou : aspects épidémiologiques, cliniques et évolutifs. Revue Malienne d’Infectiologie et de Microbiologie. 2021; 16(2):32‑5. http://revues.ml/index.php/remim/article/view/1867

II. Cherkaoui A, Emonet S, Renzi G, Riat A, Greub G, Schrenzel J. Bêtalactamases à spectre étendu et carbapénémases chez les Enterobacteriaceae. Revue Médicale Suisse. 2014;7.

III. Comité de l'Antibiogramme de la Société Française de Microbiologie; recommandations avril_2021.

IV. Sarkis P, Assaf J, Sarkis J, Zanaty M, Rehban R. Profil de résistance aux antibiotiques dans les infections urinaires communautaires au Liban. Progrès en Urologie. 2017;27(13):727. https://linkinghub.elsevier.com/retrieve/pii/S1166708717302725

V. Sbiti M, Lahmadi khalid, louzi L. Profil épidémiologique des entérobactéries uropathogènes productrices de bêta-lactamases à spectre élargi. Pan Afr Med J. 2017;28. http://www.panafrican-med-journal.com/content/article/28/29/full/

VI. Lahlou Amine I, Chegri M, L’Kassmi H. Épidémiologie et résistance aux antibiotiques des entérobactéries isolées d’infections urinaires à l’hôpital militaire Moulay-Ismail de Meknès. Antibiotiques. 2009;11(2):90‑6.

https://linkinghub.elsevier.com/retrieve/pii/S1294550108001180

VII. Diawara M, Coulibaly M, Samaké D, Touré S, Cissé D, Traoré A, et al. Antimicrobial resistant in Gram-negative bacilli: Enterobacteriaceae and non-fermenting bacilli isolated at Sominé DOLO Hospital of Mopti, Mali. GSC Biological and Pharmaceutical Sciences. 2022; 18(1):008‑13. https://gsconlinepress.com/journals/gscbps/content/antimicrobial-resistant-gram-negative-bacilli-enterobacteriaceae-and-non-fermenting-bacilli

VIII. Rakotovao-Ravahatra ZD, Randriatsarafara FM, Rasoanandrasana S, Raverohanta L, Rakotovao AL. Phénotypes de résistance des souches d’Escherichia coli responsables d’infection urinaire au laboratoire du Centre Hospitalo-Universitaire de Befelatanana Antananarivo. Pan Afr Med J. 22 2017; 26:166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483373/

IX. El bouamri MC, Arsalane L, Kamouni Y, Yahyaoui H, Bennouar N, Berraha M, et al. Profil actuel de résistance aux antibiotiques des souches d’Escherichia coli uropathogènes et conséquences thérapeutiques. Progrès en Urologie. 2014;24(16):1058‑62. https://www.sciencedirect.com/science/article/pii/S1166708714005363

X. Buxeraud J, Faure S. Les bêtalactamines. Actualités Pharmaceutiques. 2016;55(558):1‑5.

https://www.sciencedirect.com/science/article/pii/S051537001630266X

XI. Sy A, Diop O, Mbodji M, Faye M, Faye FA, Ndiaye F, Dieye CT, Thiam M, Berthe A, Diop MM, Faye N. Profil de résistance aux bêta-lactamines des entérobactéries uropathogènes isolées dans le laboratoire de biologie médicale du Centre Hospitalier Régional de Thiès. RAFMI. 2021;8(1):39-47

XII. Coque TM, Novais Â, Carattoli A, Poirel L, Pitout J, Peixe L, et al. Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15. Emerg Infect Dis. 2008;14(2):195‑200. http://wwwnc.cdc.gov/eid/article/14/2/07-0350_article.htm

XIII. Ruppé E. Épidémiologie des bêta-lactamases à spectre élargi : l’avènement des CTX-M. Antibiotiques. 2010;12(1):3‑16. https://linkinghub.elsevier.com/retrieve/pii/S129455011000004X

XIV. Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Current Opinion in Microbiology. 2006;9(5):466‑75. https://linkinghub.elsevier.com/retrieve/pii/S1369527406001342

XV. OMS. Etat de la santé de la région africaine de l'OMS. Analyse de la situation sanitaire, des services et des systèmes de santé dans le contexte des objectifs de développement durable. https://apps.who.int/iris/handle/10665/275278

XVI. Sana B, Ouedraogo AS, Semdé R. Circuit des antibiotiques en Afrique francophone : état des lieux, enjeux et perspectives. Médecine et Maladies Infectieuses Formation. 2023; 2(1):13‑8. https://linkinghub.elsevier.com/retrieve/pii/S2772743222004706

XVII. Ouedraogo AS, Jean Pierre H, Bañuls AL, Ouédraogo R, Godreuil S. Emergence and spread of antibiotic resistance in West Africa : contributing factors and threat assessment. Médecine et Santé Tropicales. 2017;27(2):147‑54. http://www.john-libbey-eurotext.fr/medline.md?doi=10.1684/mst.2017.0678

XVIII. Görgen H, Thomas Kirsch-Woik T, Schmidt-Ehry B. Le système de santé de district: Expériences et perspectives en Afrique. 2ème édition 2004.

XIX. Ministère de la santé, Burkina Faso. Guide de Diagnostic et de Traitement des affections prioritaires au premier échelon. 2ème édition 2008. 215p.

XX. Ministère de la santé. Guide pratique pour la bonne prescription des antibiotiques au Burkina Faso. 1ère édition 2019. 104p.

XXI. Collège des universitaires de Maladies Infectieuses et Tropicales (CMIT). ePILLY trop; édition 2022. Maladies infectieuses tropicales. 1029p.

XXII. Gonsu Kamga H, Nzengang R, Toukam M, Sando Z, Shiro S. Phénotypes de résistance des souches d’Escherichia coli responsables des infections urinaires communautaires dans la ville de Yaoundé (Cameroun). African Journal of Pathology and Microbiology. 2014; 3:1‑4.

doi: 10.4303/ajpm/235891