The Protein Tyrosine Phosphatase PTB1B Role in the Development of Obesity, Diabetes, and Cancer and its Potential Inhibitors
Main Article Content
Abstract
Protein tyrosine phosphatase 1 B (PTP1B) is involved in the development of obesity, type 2 diabetes, and different cancer cells, such as breast cancer and lung cancer. This makes the enzyme a promising target for the treatment of these diseases. The purpose of this review is to present the studies on the role of PTP1B in the development of obesity, diabetes, and cancer and selected inhibitors as a possible treatment. Studies have shown that PTP1B, due to its implication in obesity, type 2 diabetes, and oncogenic transformation, denotes a promising drug target. The selected compounds that are effective PTP1B inhibitors can be considered promising anti-obesity, anti-diabetic, and anticancer treatment.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Zatońska, K., A. Basiak-Rasała, D. Różańska, M. Karczewski, M. Wołyniec, et al., Changes in diabetes prevalence and corresponding risk factors - findings from 3- and 6-year follow-up of PURE Poland cohort study. BMC Public Health, 2020. 20(1): p. 843.
II. Mbanya, J.C., F.K. Assah, J. Saji, and E.N. Atanga, Obesity and type 2 diabetes in Sub-Sahara Africa. Curr Diab Rep, 2014. 14(7): p. 501.
III. Asante-Appiah, E., S. Patel, C. Dufresne, P. Roy, Q. Wang, et al., The structure of PTP-1B in complex with a peptide inhibitor reveals an alternative binding mode for bisphosphonates. Biochemistry, 2002. 41(29): p. 9043-9051.
IV. Leitner, D.R., G. Frühbeck, V. Yumuk, K. Schindler, D. Micic, et al., Obesity and Type 2 Diabetes: Two Diseases with a Need for Combined Treatment Strategies - EASO Can Lead the Way. Obes Facts, 2017. 10(5): p. 483-492.
V. Afshin, A., M.H. Forouzanfar, M.B. Reitsma, P. Sur, K. Estep, et al., Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med, 2017. 377(1): p. 13-27.
VI. Meldrum, D.R., M.A. Morris, and J.C. Gambone, Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil Steril, 2017. 107(4): p. 833-839.
VII. Nadal, A., I. Quesada, E. Tudurí, R. Nogueiras, and Alonso-Magdalena, Endocrine-disrupting chemicals and the regulation of energy balance. Nature Reviews Endocrinology, 2017. 13(9): p. 536.
VIII. Engin, A., The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol, 2017. 960: p. 1-17.
IX. Basen-Engquist, K. and M. Chang, Obesity and cancer risk: recent review and evidence. Current oncology reports, 2011. 13(1): p. 71-76.
X. Zimmet, P.Z., D.J. Magliano, W.H. Herman, and J.E. Shaw, Diabetes: a 21st century challenge. The lancet Diabetes & endocrinology, 2014. 2(1): p. 56-64.
XI. Gerich, J.E. Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus. in Mayo Clinic Proceedings. 2003. Elsevier.
XII. Leung, P.S., The potential protective action of vitamin D in hepatic insulin resistance and pancreatic islet dysfunction in type 2 diabetes mellitus. Nutrients, 2016. 8(3): p. 147.
XIII. Moghetti, P., Insulin Resistance and Polycystic Ovary Syndrome. Curr Pharm Des, 2016. 22(36): p. 5526-5534.
XIV. Olefsky, J.M., Treatment of insulin resistance with peroxisome proliferator–activated receptor γ agonists. The Journal of clinical investigation, 2000. 106(4): p. 467-472.
XV. Gealekman, O., A. Burkart, M. Chouinard, S.M. Nicoloro, J. Straubhaar, and S. Corvera, Enhanced angiogenesis in obesity and in response to PPARγ activators through adipocyte VEGF and ANGPTL4 production. American Journal of Physiology-Endocrinology and Metabolism, 2008. 295(5): p. E1056-E1064.
XVI. Larsen, T., S. Toubro, and A. Astrup, PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? International journal of obesity, 2003. 27(2): p. 147-161.
XVII. A Adeshara, K., A. G Diwan, and R. S Tupe, Diabetes and complications: cellular signaling pathways, current understanding and targeted therapies. Current drug targets, 2016. 17(11): p. 1309-1328.
XVIII. Tanti, J.-F., F. Ceppo, J. Jager, and F. Berthou, Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Frontiers in endocrinology, 2013. 3: p. 181.
XIX. He, R.-j., Z.-h. Yu, R.-y. Zhang, and Z.-y. Zhang, Protein tyrosine phosphatases as potential therapeutic targets. Acta pharmacologica sinica, 2014. 35(10): p. 1227-1246.
XX. Verma, S. and S. Sharma, Protein Tyrosine Phosphatase as Potential Therapeutic Target in various Disorders. Curr Mol Pharmacol, 2018. 11(3): p. 191-202.
XXI. Willoughby, L.F., J. Manent, K. Allan, H. Lee, M. Portela, et al., Differential regulation of protein tyrosine kinase signalling by Dock and the PTP61F variants. Febs j, 2017. 284(14): p. 2231-2250.
XXII. Sacchetti, C. and N. Bottini, Protein tyrosine phosphatases in systemic sclerosis: potential pathogenic players and therapeutic targets. Current rheumatology reports, 2017. 19(5): p. 28.
XXIII. Hendriks, W.J., A. Elson, S. Harroch, R. Pulido, A. Stoker, and J. den Hertog, Protein tyrosine phosphatases in health and disease. The FEBS journal, 2013. 280(2): p. 708-730.
XXIV. Vintonyak, V.V., A.P. Antonchick, D. Rauh, and H. Waldmann, The therapeutic potential of phosphatase inhibitors. Current opinion in chemical biology, 2009. 13(3): p. 272-283.
XXV. Bakke, J. and F.G. Haj. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. in Seminars in cell & developmental biology. 2015. Elsevier.
XXVI. Julien, S.G., N. Dubé, S. Hardy, and M.L. Tremblay, Inside the human cancer tyrosine phosphatome. Nature Reviews Cancer, 2011. 11(1): p. 35-49.
XXVII. Feldhammer, M., N. Uetani, D. Miranda-Saavedra, and M.L. Tremblay, PTP1B: a simple enzyme for a complex world. Critical reviews in biochemistry and molecular biology, 2013. 48(5): p. 430-445.
XXVIII. Kostrzewa, T., J. Styszko, M. Gorska-Ponikowska, T. Sledzinski, and A. Kuban-Jankowska, Inhibitors of protein tyrosine phosphatase PTP1B with anticancer potential. Anticancer research, 2019. 39(7): p. 3379-3384.
XXIX. Song, G.J., M. Jung, J.-H. Kim, H. Park, M.H. Rahman, et al., A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. Journal of neuroinflammation, 2016. 13(1): p. 1-14.
XXX. Cho, H., Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitamins & Hormones, 2013. 91: p. 405-424.
XXXI. Gupta, V., Pleiotropic effects of incretins. Indian journal of endocrinology and metabolism, 2012. 16(Suppl1): p. S47.
XXXII. Komatsu, T., S. Park, H. Hayashi, R. Mori, H. Yamaza, and I. Shimokawa, Mechanisms of Calorie Restriction: A Review of Genes Required for the Life-Extending and Tumor-Inhibiting Effects of Calorie Restriction. Nutrients, 2019. 11(12).
XXXIII. Nässel, D.R. and J.V. Broeck, Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cellular and Molecular Life Sciences, 2016. 73(2): p. 271-290.
XXXIV. Leto, D. and A.R. Saltiel, Regulation of glucose transport by insulin: traffic control of GLUT4. Nature reviews Molecular cell biology, 2012. 13(6): p. 383-396.
XXXV. Müller, T.D., B. Finan, S.R. Bloom, D. D'Alessio, D.J. Drucker, et al., Glucagon-like peptide 1 (GLP-1). Mol Metab, 2019. 30: p. 72-130.
XXXVI. Badisco, L., P. Van Wielendaele, and J. Vanden Broeck, Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Frontiers in physiology, 2013. 4: p. 202.
XXXVII. Minard, A.Y., M.K. Wong, R. Chaudhuri, S.-X. Tan, S.J. Humphrey, et al., Hyperactivation of the insulin signaling pathway improves intracellular proteostasis by coordinately up-regulating the proteostatic machinery in adipocytes. Journal of Biological Chemistry, 2016. 291(49): p. 25629-25640.
XXXVIII. Choi, E., X. Zhang, C. Xing, and H. Yu, Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis. Cell, 2016. 166(3): p. 567-581.
XXXIX. Deshmukh, A.S., Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle. Horm Mol Biol Clin Investig, 2016. 26(1): p. 13-24.
XL. De Luca, C. and J.M. Olefsky, Inflammation and insulin resistance. FEBS letters, 2008. 582(1): p. 97-105.
XLI. Parolari, A., Legume Proteins For The Management Of Chronic Diseases: Hyperlipidemia And Diabetes. 2014.
XLII. Banks, W.A., J.B. Owen, and M.A. Erickson, Insulin in the brain: there and back again. Pharmacol Ther, 2012. 136(1): p. 82-93.
XLIII. Stuard, W.L., R. Titone, and D.M. Robertson, The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. Front Endocrinol (Lausanne), 2020. 11: p. 24.
XLIV. Arneth, B., R. Arneth, and M. Shams, Metabolomics of type 1 and type 2 diabetes. International journal of molecular sciences, 2019. 20(10): p. 2467.
XLV. Jyotaki, M., K. Sanematsu, N. Shigemura, R. Yoshida, and Y. Ninomiya, Leptin suppresses sweet taste responses of enteroendocrine STC-1 cells. Neuroscience, 2016. 332: p. 76-87.
XLVI. Kwon, O., K.W. Kim, and M.S. Kim, Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci, 2016. 73(7): p. 1457-77.
XLVII. Carter, S., A. Caron, D. Richard, and F. Picard, Role of leptin resistance in the development of obesity in older patients. Clinical interventions in aging, 2013. 8: p. 829.
XLVIII. Li, X., L. Wang, and D. Shi, The design strategy of selective PTP1B inhibitors over TCPTP. Bioorg Med Chem, 2016. 24(16): p. 3343-52.
XLIX. Allison, M.B., C.M. Patterson, M.J. Krashes, B.B. Lowell, M.G. Myers Jr, and D.P. Olson, TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Molecular metabolism, 2015. 4(4): p. 299-309.
L. Ge, T.T., X.X. Yao, F.L. Zhao, X.H. Zou, W. Yang, et al., Role of leptin in the regulation of food intake in fasted mice. J Cell Mol Med, 2020. 24(8): p. 4524-4532.
LI. Ghadge, A.A. and A.A. Khaire, Leptin as a predictive marker for metabolic syndrome. Cytokine, 2019. 121: p. 154735.
LII. Abella, V., M. Scotece, J. Conde, J. Pino, M.A. Gonzalez-Gay, et al., Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol, 2017. 13(2): p. 100-109.
LIII. Park, H.-K. and R.S. Ahima, Leptin signaling. F1000prime reports, 2014. 6.
LIV. Arroyo-Jousse, V., A. Jaramillo, E. Castaño-Moreno, M. Lépez, K. Carrasco-Negüe, and P. Casanello, Adipokines underlie the early origins of obesity and associated metabolic comorbidities in the offspring of women with pregestational obesity. Biochim Biophys Acta Mol Basis Dis, 2020. 1866(2): p. 165558.
LV. German, J.P., J.P. Thaler, B.E. Wisse, I.S. Oh, D.A. Sarruf, et al., Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology, 2011. 152(2): p. 394-404.
LVI. Al-Rawi, N., M. Madkour, H. Jahrami, D. Salahat, F. Alhasan, et al., Effect of diurnal intermittent fasting during Ramadan on ghrelin, leptin, melatonin, and cortisol levels among overweight and obese subjects: A prospective observational study. PLoS One, 2020. 15(8): p. e0237922.
LVII. Stubbs, R.J. and J. Turicchi, From famine to therapeutic weight loss: Hunger, psychological responses, and energy balance‐related behaviors. Obesity Reviews, 2021.
LVIII. Zigman, J.M., S.G. Bouret, and Z.B. Andrews, Obesity impairs the action of the neuroendocrine ghrelin system. Trends in Endocrinology & Metabolism, 2016. 27(1): p. 54-63.
LIX. D'Souza A, M., U.H. Neumann, M.M. Glavas, and T.J. Kieffer, The glucoregulatory actions of leptin. Mol Metab, 2017. 6(9): p. 1052-1065.
LX. Homan, P., S. Grob, G. Milos, U. Schnyder, A. Eckert, et al., The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa. International journal of neuropsychopharmacology, 2015. 18(5).
LXI. Dubern, B. and K. Clement, Leptin and leptin receptor-related monogenic obesity. Biochimie, 2012. 94(10): p. 2111-2115.
LXII. Farr, O.M., A. Gavrieli, and C.S. Mantzoros, Leptin applications in 2015: what have we learned about leptin and obesity? Curr Opin Endocrinol Diabetes Obes, 2015. 22(5): p. 353-9.
LXIII. Könner, A.C., T. Klöckener, and J.C. Brüning, Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiology & behavior, 2009. 97(5): p. 632-638.
LXIV. Narishima, R., M. Yamasaki, S. Hasegawa, and T. Fukui, Genetic obesity affects neural ketone body utilization in the rat brain. Obesity (Silver Spring), 2009. 17(3): p. 611-5.
LXV. El-Abhar, H., M.A. Abd El Fattah, W. Wadie, and D.M. El-Tanbouly, Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington's disease. PLoS One, 2018. 13(9): p. e0203837.
LXVI. Xiaorui, W., Regulation Of Hypothalamic Pomc Expression By Mecp2 And Its Contribution To Leptin Resistance. 2013.
LXVII. Arora, L., A.P. Kumar, F. Arfuso, W.J. Chng, and G. Sethi, The role of signal transducer and activator of transcription 3 (STAT3) and its targeted inhibition in hematological malignancies. Cancers, 2018. 10(9): p. 327.
LXVIII. Zabeau, L., D. Defeau, J. Van der Heyden, H. Iserentant, J.l. Vandekerckhove, and J. Tavernier, Functional analysis of leptin receptor activation using a Janus kinase/signal transducer and activator of transcription complementation assay. Molecular Endocrinology, 2004. 18(1): p. 150-161.
LXIX. Huang, H., D. Kong, K.H. Byun, C. Ye, S. Koda, et al., Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor signaling. Nat Neurosci, 2012. 15(10): p. 1391-8.
LXX. Villanueva, E.C. and M.G. Myers, Jr., Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond), 2008. 32 Suppl 7(Suppl 7): p. S8-12.
LXXI. Hall, J.E., A.A. da Silva, J.M. do Carmo, J. Dubinion, S. Hamza, et al., Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. Journal of Biological Chemistry, 2010. 285(23): p. 17271-17276.
LXXII. Robertson, S.A., G.M. Leinninger, and M.G. Myers Jr, Molecular and neural mediators of leptin action. Physiology & behavior, 2008. 94(5): p. 637-642.
LXXIII. Park, H.-K. and R.S. Ahima, Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism, 2015. 64(1): p. 24-34.
LXXIV. Lima, L.B., M. Metzger, I.C. Furigo, and J. Donato, Jr., Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures. Brain Res, 2016. 1646: p. 366-376.
LXXV. Aragonès, G., A. Ardid‐Ruiz, M. Ibars, M. Suárez, and C. Bladé, Modulation of leptin resistance by food compounds. Molecular nutrition & food research, 2016. 60(8): p. 1789-1803.
LXXVI. Liu, X.-Y., J.-H. Shi, W.-H. Du, Y.-P. Fan, X.-L. Hu, et al., Glucocorticoids decrease body weight and food intake and inhibit appetite regulatory peptide expression in the hypothalamus of rats. Experimental and therapeutic medicine, 2011. 2(5): p. 977-984.
LXXVII. Jéquier, E., Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci, 2002. 967: p. 379-88.
LXXVIII. Valassi, E., M. Scacchi, and F. Cavagnini, Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis, 2008. 18(2): p. 158-68.
LXXIX. Klöckener, T., S. Hess, B.F. Belgardt, L. Paeger, L.A. Verhagen, et al., High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nature neuroscience, 2011. 14(7): p. 911-918.
LXXX. 80. Wang, C., E. Bomberg, A. Levine, C. Billington, and C.M. Kotz, Brain-derived neurotrophic factor in the ventromedial nucleus of the hypothalamus reduces energy intake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007. 293(3): p. R1037-R1045.
LXXXI. 81. Reed, A.S., E.K. Unger, L.E. Olofsson, M.L. Piper, M.G. Myers, and A.W. Xu, Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes, 2010. 59(4): p. 894-906.
LXXXII. 82. Yang, Z., M. Hulver, R.P. McMillan, L. Cai, E.E. Kershaw, et al., Regulation of insulin and leptin signaling by muscle suppressor of cytokine signaling 3 (SOCS3). PloS one, 2012. 7(10): p. e47493.
LXXXIII. 83. Xiang, S., N.G. Dong, J.P. Liu, Y. Wang, J.W. Shi, et al., Inhibitory effects of suppressor of cytokine signaling 3 on inflammatory cytokine expression and migration and proliferation of IL-6/IFN-γ-induced vascular smooth muscle cells. J Huazhong Univ Sci Technolog Med Sci, 2013. 33(5): p. 615-622.
LXXXIV. 84. Koren, S. and I.G. Fantus, Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Practice & Research Clinical Endocrinology & Metabolism, 2007. 21(4): p. 621-640.
LXXXV. 85. Krishnan, N., K.F. Konidaris, G. Gasser, and N.K. Tonks, A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. Journal of Biological Chemistry, 2018. 293(5): p. 1517-1525.
LXXXVI. Roskoski Jr, R., Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacological research, 2019. 139: p. 395-411.
LXXXVII. Tonks, N.K., Protein tyrosine phosphatases–from housekeeping enzymes to master regulators of signal transduction. The FEBS journal, 2013. 280(2): p. 346-378.
LXXXVIII. Keshet, Y. and R. Seger, The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. MAP kinase signaling protocols, 2010: p. 3-38.
LXXXIX. Siveen, K.S., K.S. Prabhu, I.W. Achkar, S. Kuttikrishnan, S. Shyam, et al., Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer, 2018. 17(1): p. 31.
XC. Gocek, E., A.N. Moulas, and G.P. Studzinski, Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Critical reviews in clinical laboratory sciences, 2014. 51(3): p. 125-137.
XCI. Singh, S.P., F. Dammeijer, and R.W. Hendriks, Role of Bruton’s tyrosine kinase in B cells and malignancies. Molecular cancer, 2018. 17(1): p. 1-23.
XCII. Belli, S., D. Esposito, A. Servetto, A. Pesapane, L. Formisano, and R. Bianco, c-Src and EGFR Inhibition in Molecular Cancer Therapy: What Else Can We Improve? Cancers, 2020. 12(6): p. 1489.
XCIII. Dasgupta, P., W. Rizwani, S. Pillai, R. Kinkade, M. Kovacs, et al., Nicotine induces cell proliferation, invasion and epithelial‐mesenchymal transition in a variety of human cancer cell lines. International Journal of Cancer, 2009. 124(1): p. 36-45.
XCIV. Serrels, A., I.R. Macpherson, T.J. Evans, F.Y. Lee, E.A. Clark, et al., Identification of potential biomarkers for measuring inhibition of Src kinase activity in colon cancer cells following treatment with dasatinib. Molecular cancer therapeutics, 2006. 5(12): p. 3014-3022.
XCV. Tryfonopoulos, D., S. Walsh, D. Collins, L. Flanagan, C. Quinn, et al., Src: a potential target for the treatment of triple-negative breast cancer. Annals of oncology, 2011. 22(10): p. 2234-2240.
XCVI. Courtneidge, S.A., Role of Src in signal transduction pathways. 2002, Portland Press Ltd.
XCVII. Ingley, E., Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta, 2008. 1784(1): p. 56-65.
XCVIII. Shankar, A., N. Agrawal, M. Sharma, A. Pandey, and G. K Pandey, Role of protein tyrosine phosphatases in plants. Current genomics, 2015. 16(4): p. 224-236.
XCIX. Weng, M.S., J.H. Chang, W.Y. Hung, Y.C. Yang, and M.H. Chien, The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J Exp Clin Cancer Res, 2018. 37(1): p. 61.
C. Tonks, N.K., Redox redux: revisiting PTPs and the control of cell signaling. Cell, 2005. 121(5): p. 667-670.
CI. Gào, X. and B. Schöttker, Reduction–oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget, 2017. 8(31): p. 51888.
CII. Taylor, S.S., E. Radzio‐Andzelm, and T. Hunter, How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor protein‐tyrosine kinase. The FASEB Journal, 1995. 9(13): p. 1255-1266.
CIII. 103. Blaskovich, M.A., Drug discovery and protein tyrosine phosphatases. Current medicinal chemistry, 2009. 16(17): p. 2095-2176.
CIV. Rawlings, J.S., K.M. Rosler, and D.A. Harrison, The JAK/STAT signaling pathway. Journal of cell science, 2004. 117(8): p. 1281-1283.
CV. Winterbourn, C.C., Are free radicals involved in thiol-based redox signaling? Free Radical Biology and Medicine, 2015. 80: p. 164-170.
CVI. Boivin, B. and N.K. Tonks, Analysis of the redox regulation of protein tyrosine phosphatase superfamily members utilizing a cysteinyl-labeling assay. Methods in enzymology, 2010. 474: p. 35-50.
CVII. Ito, Y., M. Fukui, M. Kanda, K. Morishita, Y. Shoji, et al., Therapeutic effects of the allosteric protein tyrosine phosphatase 1B inhibitor KY-226 on experimental diabetes and obesity via enhancements in insulin and leptin signaling in mice. Journal of pharmacological sciences, 2018. 137(1): p. 38-46.
CVIII. Li, S., J. Zhang, S. Lu, W. Huang, L. Geng, et al., The mechanism of allosteric inhibition of protein tyrosine phosphatase 1B. PLoS One, 2014. 9(5): p. e97668.
CIX. Dubé, N. and M.L. Tremblay, Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2005. 1754(1-2): p. 108-117.
CX. Wang, J., B. Liu, X. Chen, L. Su, P. Wu, et al., PTP1B expression contributes to gastric cancer progression. Medical Oncology, 2012. 29(2): p. 948-956.
CXI. Feldhammer, M., N. Uetani, D. Miranda-Saavedra, and M.L. Tremblay, PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol, 2013. 48(5): p. 430-45.
CXII. Harris, D.L. and N.C. Joyce, Protein tyrosine phosphatase, PTP1B, expression and activity in rat corneal endothelial cells. Molecular vision, 2007. 13: p. 785.
CXIII. Olmez, E.O. and B. Alakent, Alpha7 helix plays an important role in the conformational stability of PTP1B. Journal of Biomolecular Structure and Dynamics, 2011. 28(5): p. 675-693.
CXIV. Shinde, R.N., G.S. Kumar, S. Eqbal, and M.E. Sobhia, Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches. PloS one, 2018. 13(6): p. e0199020.
CXV. Katz, A., P. Saenz-Méndez, A. Cousido-Siah, A.D. Podjarny, and O.N. Ventura, Experimental and theoretical study of the movement of the wpd flexible loop of human protein tyrosine phosphatase PTP1B in complex with halide ions. Biophysical Reviews and Letters, 2012. 7(03n04): p. 197-217.
CXVI. Brandão, T.A., S.J. Johnson, and A.C. Hengge, The molecular details of WPD-loop movement differ in the protein-tyrosine phosphatases YopH and PTP1B. Archives of biochemistry and biophysics, 2012. 525(1): p. 53-59.
CXVII. Whittier, S.K., A.C. Hengge, and J.P. Loria, Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases. Science, 2013. 341(6148): p. 899-903.
CXVIII. Choy, M.S., Y. Li, L.E. Machado, M.B. Kunze, C.R. Connors, et al., Conformational rigidity and protein dynamics at distinct timescales regulate PTP1B activity and allostery. Molecular cell, 2017. 65(4): p. 644-658. e5.
CXIX. Blanchetot, C., M. Chagnon, N. Dube, M. Halle, and M. Tremblay, Substrate-trapping techniques in the identification of cellular PTP targets. Methods, 2005. 35(1): p. 44-53.
CXX. Kamerlin, S.C.L., R. Rucker, and S. Boresch, A targeted molecular dynamics study of WPD loop movement in PTP1B. Biochemical and biophysical research communications, 2006. 345(3): p. 1161-1166.
CXXI. Lessard, L., M. Stuible, and M.L. Tremblay, The two faces of PTP1B in cancer. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2010. 1804(3): p. 613-619.
CXXII. Maheshwari, N., C. Karthikeyan, P. Trivedi, and N.H.N. Moorthy, Recent advances in protein tyrosine phosphatase 1B targeted drug discovery for type II diabetes and obesity. Current drug targets, 2018. 19(5): p. 551-575.
CXXIII. Zhu, S., J.D. Bjorge, and D.J. Fujita, PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res, 2007. 67(21): p. 10129-37.
CXXIV. Kaszubska, W., H.D. Falls, V.G. Schaefer, D. Haasch, L. Frost, et al., Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Molecular and cellular endocrinology, 2002. 195(1-2): p. 109-118.
CXXV. Copps, K. and M. White, Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012. 55(10): p. 2565-2582.
CXXVI. 126. Bence, K.K., Hepatic PTP1B deficiency: the promise of a treatment for metabolic syndrome? Journal of clinical metabolism & diabetes, 2010. 1(1): p. 27.
CXXVII. Jung, H.J., S.H. Seong, M.Y. Ali, B.-S. Min, H.A. Jung, and J.S. Choi, α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Archives of pharmacal research, 2017. 40(12): p. 1403-1413.
CXXVIII. Bjorge, J.D., A. Pang, and D.J. Fujita, Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. Journal of Biological Chemistry, 2000. 275(52): p. 41439-41446.
CXXIX. Zhu, S., J.D. Bjorge, and D.J. Fujita, PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer research, 2007. 67(21): p. 10129-10137.
CXXX. Hussain, H., I.R. Green, G. Abbas, S.M. Adekenov, W. Hussain, and I. Ali, Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential anti-diabetes agents: patent review (2015-2018). Expert opinion on therapeutic patents, 2019. 29(9): p. 689-702.
CXXXI. Ruddraraju, K.V. and Z.-Y. Zhang, Covalent inhibition of protein tyrosine phosphatases. Molecular BioSystems, 2017. 13(7): p. 1257-1279.
CXXXII. Peti, W. and R. Page, Strategies to make protein serine/threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: achieving specificity by targeting substrate and regulatory protein interaction sites. Bioorganic & medicinal chemistry, 2015. 23(12): p. 2781-2785.
CXXXIII. Gannam, Z.T., K. Min, S.R. Shillingford, L. Zhang, J. Herrington, et al., An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Science signaling, 2020. 13(646).
CXXXIV. Khan, S., I. Bjij, and M.E. Soliman, Selective covalent inhibition of “Allosteric Cys121” distort the binding of PTP1B enzyme: a novel therapeutic approach for cancer treatment. Cell biochemistry and biophysics, 2019. 77(3): p. 203-211.
CXXXV. Wiesmann, C., K.J. Barr, J. Kung, J. Zhu, D.A. Erlanson, et al., Allosteric inhibition of protein tyrosine phosphatase 1B. Nature structural & molecular biology, 2004. 11(8): p. 730-737.
CXXXVI. Krishnan, N., D. Koveal, D.H. Miller, B. Xue, S.D. Akshinthala, et al., Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nature chemical biology, 2014. 10(7): p. 558-566.
CXXXVII. Lu, S. and J. Zhang, Designed covalent allosteric modulators: an emerging paradigm in drug discovery. Drug Discovery Today, 2017. 22(2): p. 447-453.
CXXXVIII. Byrne, D.P., S. Shrestha, M. Galler, M. Cao, L.A. Daly, et al., Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Science Signaling, 2020. 13(639).
CXXXIX. Karrouchi, K., S. Radi, Y. Ramli, J. Taoufik, Y.N. Mabkhot, and F.A. Al-Aizari, Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 2018. 23(1): p. 134.
CXL. Morishita, K., Y. Shoji, S. Tanaka, M. Fukui, Y. Ito, et al., Novel non-carboxylate benzoylsulfonamide-based protein tyrosine phosphatase 1B inhibitors with non-competitive actions. Chemical and Pharmaceutical Bulletin, 2017. 65(12): p. 1144-1160.
CXLI. Sun, M., Y. Shinoda, and K. Fukunaga, KY-226 Protects Blood–brain Barrier Function Through the Akt/FoxO1 Signaling Pathway in Brain Ischemia. Neuroscience, 2019. 399: p. 89-102.
CXLII. Sun, M., H. Izumi, Y. Shinoda, and K. Fukunaga, Neuroprotective effects of protein tyrosine phosphatase 1B inhibitor on cerebral ischemia/reperfusion in mice. Brain research, 2018. 1694: p. 1-12.
CXLIII. Kostrzewa, T., K.K. Sahu, M. Gorska-Ponikowska, J.A. Tuszynski, and A. Kuban-Jankowska, Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. Drug design, development and therapy, 2018. 12: p. 4139.
CXLIV. Nevola, L. and E. Giralt, Modulating protein–protein interactions: the potential of peptides. Chemical Communications, 2015. 51(16): p. 3302-3315.
CXLV. Gui, L., X.H. Zhang, Z.Y. Qiao, and H. Wang, Cell‐Penetrating Peptides and Polymers for Improved Drug Delivery. ChemNanoMat, 2020. 6(8): p. 1138-1148.
CXLVI. Kostrzewa, T., J. Styszko, M. Gorska-Ponikowska, T. Sledzinski, and A. Kuban-Jankowska, Inhibitors of Protein Tyrosine Phosphatase PTP1B With Anticancer Potential. Anticancer Res, 2019. 39(7): p. 3379-3384.
CXLVII. Eleftheriou, P., A. Geronikaki, and A. Petrou, PTP1b inhibition, a promising approach for the treatment of diabetes type II. Current topics in medicinal chemistry, 2019. 19(4): p. 246-263.
CXLVIII. Ferreira, C.V., G.Z. Justo, A.C. Souza, K.C. Queiroz, W.F. Zambuzzi, et al., Natural compounds as a source of protein tyrosine phosphatase inhibitors: application to the rational design of small-molecule derivatives. Biochimie, 2006. 88(12): p. 1859-1873.
CXLIX. Kawser Hossain, M., A. Abdal Dayem, J. Han, Y. Yin, K. Kim, et al., Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International journal of molecular sciences, 2016. 17(4): p. 569.
CL. Uzayisenga, R., P.A. Ayeka, and Y. Wang, Anti‐diabetic potential of Panax notoginseng saponins (PNS): a review. Phytotherapy Research, 2014. 28(4): p. 510-516.
CLI. Ezzat, S.M., M.H.E. Bishbishy, S. Habtemariam, B. Salehi, M. Sharifi-Rad, et al., Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: A special emphasis on PTP1B inhibitors. Molecules, 2018. 23(12): p. 3334.
CLII. Taesook, Y., J.J. Young, S. YoonYoung, K.S. Ju, C.M. Sook, et al., Anti-Obesity Effect of Dipsacus Asperoides Extract in 3T3-L1 Preadipocytes and High Fat Diet-induced Obese Mouse Model.추계총회및학술대회, 2009: p. 133-133.
CLIII. Kuban-Jankowska, A., M. Gorska-Ponikowska, and M. Wozniak, Lipoic acid decreases the viability of breast cancer cells and activity of PTP1B and SHP2. Anticancer research, 2017. 37(6): p. 2893-2898.
CLIV. Kostrzewa, T., P. Przychodzen, M. Gorska-Ponikowska, and A. Kuban-Jankowska, Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer research, 2019. 39(2): p. 745-749.