Computational Methods to unveil the Structural Bases for the recognition of SARS-CoV-2 by Human Nicotinic Acetylcholine Receptors

Main Article Content

Ottavia Spiga
Luisa Frusciante
Michela Geminiani
Francesco Pettini
Alfonso Trezza
Anna Visibelli
Annalisa Santucci

Abstract

The novel pathogen SARS-CoV-2 has caused the global pandemic of Covid-19. The hypothesis of this study is that Nicotinic Acetylcholine Receptors (nAChRs) are involved in SARS-CoV-2 infection, explaining the hyper-inflammatory characteristics observed in a subset of Covid-19 patients. nAChRs represent specific receptors for a wide variety of toxins and have been proposed to serve as receptors for Rabies Virus (RABV) and Human Immunodeficiency Virus (HIV) as well, based on sequence homology with the so called “toxic loop” of α-bungarotoxin. Sequence similarities between a motif found in SARS-CoV-2 S protein and in snake neurotoxins, as well as RABV neurotoxin-like region, HIV-1 gp120 and α-conotoxin from Conus geographus, highlights the existence of a correlation between these proteins’ functional sites. In this study, in silico procedures were used to determine SARS-CoV-2 S protein structure-function relationships, revealing the presence of features characteristic of the “toxic loop” known to bind nAChRs and their involvement in the S protein-nAChR interaction. Our results suggest that a polybasic sequence-carrying motif found in SARS-CoV-2 S protein could be involved in the binding, in particular underling the role of Arg685 in the interaction with the receptor.

Article Details

How to Cite
Ottavia Spiga, Luisa Frusciante, Michela Geminiani, Francesco Pettini, Alfonso Trezza, Anna Visibelli, & Annalisa Santucci. (2023). Computational Methods to unveil the Structural Bases for the recognition of SARS-CoV-2 by Human Nicotinic Acetylcholine Receptors . International Journal of Pharmaceutical and Bio Medical Science, 3(3), 115–124. https://doi.org/10.47191/ijpbms/v3-i3-05
Section
Articles

References

I. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506, doi:10.1016/S0140-6736(20)30183-5.

II. Https://Covid19.Who.Int/.

III. Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19., doi:10.1038/s41579-020-00459-7.

IV. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271-280.e8, doi:10.1016/j.cell.2020.02.052.

V. Kopańska, M.; Batoryna, M.; Bartman, P.; Szczygielski, J.; Banaś-Ząbczyk, A. Disorders of the Cholin-ergic System in COVID-19 Era—A Review of the Latest Research. Int J Mol Sci 2022, 23, 672, doi:10.3390/ijms23020672.

VI. Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The Spike Glycopro-tein of the New Coronavirus 2019-NCoV Contains a Furin-like Cleavage Site Absent in CoV of the Same Clade. Antiviral Res 2020, 176, doi:10.1016/J.ANTIVIRAL.2020.104742.

VII. Fu, Y.; Cheng, Y.; Wu, Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol Sin 2020, 35, 266–271, doi:10.1007/s12250-020-00207-4.

VIII. Gharpure, A.; Noviello, C.M.; Hibbs, R.E. Progress in Nicotinic Receptor Structural Biology. Neuro-pharmacology 2020, 171, 108086, doi:10.1016/j.neuropharm.2020.108086.

IX. Hecker, A.; Küllmar, M.; Wilker, S.; Richter, K.; Zakrzewicz, A.; Atanasova, S.; Mathes, V.; Timm, T.; Lerner, S.; Klein, J.; et al. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Ago-nists Inhibit ATP-Induced IL-1β Release. J Immunol 2015, 195, 2325–2334, doi:10.4049/jimmunol.1400974.

X. Kruk-Słomka, M.; Budzyńska, B.; Biała, G. Involvement of Cholinergic Receptors in the Different Stages of Memory Measured in the Modified Elevated plus Maze Test in Mice. Pharmacological Reports 2012, 64, 1066–1080, doi:10.1016/S1734-1140(12)70904-0.

XI. Dutertre, S.; Nicke, A.; Tsetlin, V.I. Nicotinic Acetylcholine Receptor Inhibitors Derived from Snake and Snail Venoms. Neuropharmacology 2017, 127, 196–223, doi:10.1016/j.neuropharm.2017.06.011.

XII. Endo, T.; Tamiya, N. Current View on the Structure-Function Relationship of Postsynaptic Neurotox-ins from Snake Venoms. Pharmacol Ther 1987, 34, 403–406, doi:10.1016/0163-7258(87)90002-7.

XIII. Neri, P.; Bracci, L.; Rustici, M.; Santucci, A. Sequence Homology between HIV Gp120, Rabies Virus Glycoprotein, and Snake Venom Neurotoxins. Arch Virol 1990, 114, 265–269, doi:10.1007/BF01310756.

XIV. Bracci, L.; Lozzi, L.; Rustici, M.; Neri, P. Binding of HIV-1 Gp120 to the Nicotinic Receptor. FEBS Lett 1992, 311, 115–118, doi:10.1016/0014-5793(92)81380-5.

XV. Sajjanar, B.; Dhusia, K.; Saxena, S.; Joshi, V.; Bisht, D.; Thakuria, D.; Manjunathareddy, G.B.; Ramteke, P.W.; Kumar, S. Nicotinic Acetylcholine Receptor Alpha 1(NAChRα1) Subunit Peptides as Potential Antiviral Agents against Rabies Virus. Int J Biol Macromol 2017, 104, 180–188, doi:10.1016/j.ijbiomac.2017.05.179.

XVI. Lentz, T.L. Structure-Function Relationships of Curaremimetic Neurotoxin Loop 2 and of a Structur-ally Similar Segment of Rabies Virus Glycoprotein in Their Interaction with the Nicotinic Acetylcho-line Receptor. Biochemistry 1991, 30, 10949–10957, doi:10.1021/bi00109a020.

XVII. Jackson, A.C. Current and Future Approaches to the Therapy of Human Rabies. Antiviral Res 2013, 99, 61–67, doi:10.1016/J.ANTIVIRAL.2013.01.003.

XVIII. Skok, M. v.; Grailhe, R.; Agenes, F.; Changeux, J.P. The Role of Nicotinic Receptors in B-Lymphocyte Development and Activation. Life Sci 2007, 80, 2334–2336, doi:10.1016/J.LFS.2007.02.005.

XIX. Kawashima, K.; Fujii, T.; Moriwaki, Y.; Misawa, H.; Horiguchi, K. Non-Neuronal Cholinergic System in Regulation of Immune Function with a Focus on Α7 NAChRs. Int Immunopharmacol 2015, 29, 127–134, doi:10.1016/j.intimp.2015.04.015.

XX. Valdés-Ferrer, S.I.; Crispín, J.C.; Belaunzarán-Zamudio, P.F.; Rodríguez-Osorio, C.A.; Cacho-Díaz, B.; Alcocer-Varela, J.; Cantú-Brito, C.; Sierra-Madero, J. Add-on Pyridostigmine Enhances CD4+ T-Cell Recovery in HIV-1-Infected Immunological Non-Responders: A Proof-of-Concept Study. Front Immu-nol 2017, 8, doi:10.3389/fimmu.2017.01301.

XXI. Chrestia, J.F.; Oliveira, A.S.; Mulholland, A.J.; Gallagher, T.; Bermúdez, I.; Bouzat, C. A Functional In-teraction Between Y674-R685 Region of the SARS-CoV-2 Spike Protein and the Human Α7 Nicotinic Receptor. Mol Neurobiol 2022, 59, 6076–6090, doi:10.1007/s12035-022-02947-8.

XXII. Oliveira, A.S.F.; Ibarra, A.A.; Bermudez, I.; Casalino, L.; Gaieb, Z.; Shoemark, D.K.; Gallagher, T.; Ses-sions, R.B.; Amaro, R.E.; Mulholland, A.J. A Potential Interaction between the SARS-CoV-2 Spike Pro-tein and Nicotinic Acetylcholine Receptors. Biophys J 2021, 120, 983–993, doi:10.1016/J.BPJ.2021.01.037.

XXIII. Changeux, J.-P.; Amoura, Z.; Rey, F.A.; Miyara, M. A Nicotinic Hypothesis for Covid-19 with Preven-tive and Therapeutic Implications. C R Biol 2020, 343, 33–39, doi:10.5802/crbiol.8.

XXIV. Dormoy, V.; Perotin, J.M.; Gosset, P.; Maskos, U.; Polette, M.; Deslée, G. Nicotinic Receptors as SARS-CoV-2 Spike Co-Receptors? Med Hypotheses 2022, 158, doi:10.1016/J.MEHY.2021.110741.

XXV. Lagoumintzis, G.; Chasapis, C.T.; Alexandris, N.; Kouretas, D.; Tzartos, S.; Eliopoulos, E.; Farsalinos, K.; Poulas, K. Nicotinic Cholinergic System and COVID-19: In Silico Identification of Interactions be-tween Α7 Nicotinic Acetylcholine Receptor and the Cryptic Epitopes of SARS-Co-V and SARS-CoV-2 Spike Glycoproteins. Food and Chemical Toxicology 2021, 149, 112009, doi:10.1016/J.FCT.2021.112009.

XXVI. Doria, D.; Santin, A.D.; Tuszynski, J.A.; Scheim, D.E.; Aminpour, M. Omicron SARS-CoV-2 Spike-1 Pro-tein’s Decreased Binding Affinity to α7nAChr: Implications for Autonomic Dysregula-tion of the Parasympathetic Nervous System and the Cholinergic Anti-Inflammatory Path-way—An In Silico Analysis. BioMedInformatics 2022, Vol. 2, Pages 553-564 2022, 2, 553–564, doi:10.3390/BIOMEDINFORMATICS2040035.

XXVII. Kalashnyk, O.; Lykhmus, O.; Izmailov, M.; Koval, L.; Komisarenko, S.; Skok, M. SARS-Cov-2 Spike Pro-tein Fragment 674e685 Protects Mitochondria from Releasing Cytochrome c in Response to Apop-togenic Influence. 2021, doi:10.1016/j.bbrc.2021.05.018.

XXVIII. Wang, H.-L.; Gao, F.; Bren, N.; Sine, S.M. Curariform Antagonists Bind in Different Orientations to the Nicotinic Receptor Ligand Binding Domain. Journal of Biological Chemistry 2003, 278, 32284–32291, doi:10.1074/jbc.M304366200.

XXIX. Scarselli, M.; Spiga, O.; Ciutti, A.; Bernini, A.; Bracci, L.; Lelli, B.; Lozzi, L.; Calamandrei, D.; di Maro, D.; Klein, S.; et al. NMR Structure of α-Bungarotoxin Free and Bound to a Mimotope of the Nicotinic Acetylcholine Receptor. Biochemistry 2002, 41, 1457–1463, doi:10.1021/BI011012F.

XXX. Servent, D.; Thanh, H.L.; Antil, S.; Bertrand, D.; Corringer, P.J.; Changeux, J.P.; Ménez, A. Functional Determinants by Which Snake and Cone Snail Toxins Block the Α7 Neuronal Nicotinic Acetylcholine Receptors. J Physiol Paris 1998, 92, 107–111, doi:10.1016/S0928-4257(98)80146-0.

XXXI. Cecchini, M.; Changeux, J.P. The Nicotinic Acetylcholine Receptor and Its Prokaryotic Homologues: Structure, Conformational Transitions & Allosteric Modulation. Neuropharmacology 2015, 96, 137–149, doi:10.1016/J.NEUROPHARM.2014.12.006.

XXXII. Post, M.R.; Tender, G.S.; Lester, H.A.; Dougherty, D.A. Secondary Ammonium Agonists Make Dual Cation-π Interactions in Α4β2 Nicotinic Receptors. eNeuro 2017, 4, ENEURO.0032-17.2017, doi:10.1523/ENEURO.0032-17.2017.

XXXIII. Morales Duque, H.; Campos Dias, S.; Franco, O. Structural and Functional Analyses of Cone Snail Toxins. Mar Drugs 2019, 17, 370, doi:10.3390/md17060370.

XXXIV. Bateman, A.; Martin, M.J.; O’Donovan, C.; Magrane, M.; Alpi, E.; Antunes, R.; Bely, B.; Bingley, M.; Bonilla, C.; Britto, R.; et al. UniProt: The Universal Protein Knowledgebase. Nucleic Acids Res 2017, 45, D158–D169, doi:10.1093/NAR/GKW1099.

XXXV. Webb B, Sali A. Protein Structure Modeling with MODELLER. Methods Mol Biol. 2017;1654:39-54. doi: 10.1007/978-1-4939-7231-9_4. PMID: 28986782

XXXVI. Kelley LA et al.. Nature Protocols 10, 845-858 (2015)

XXXVII. Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J Comput Chem 2008, 29, 1859–1865, doi:10.1002/jcc.20945.

XXXVIII. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J Comput Chem 2004, 25, 1605–1612, doi:10.1002/JCC.20084.

XXXIX. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High Per-formance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25, doi:10.1016/J.SOFTX.2015.06.001.

XL. Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J Chem Phys 2007, 126, 014101, doi:10.1063/1.2408420.

XLI. Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J Chem Phys 1984, 81, 3684–3690, doi:10.1063/1.448118.

XLII. Hess, B.; Bekker, H.; C Berendsen, H.J.; E M Fraaije, J.G. 3 LINCS: A Linear Constraint Solver for Mo-lecular Simulations. 1997, 18, 1463–1472.

XLIII. Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅Log(N) Method for Ewald Sums in Large Systems. J Chem Phys 1993, 98, 5648, doi:10.1063/1.464397.

XLIV. Piovesan, D.; Minervini, G.; Tosatto, S.C.E. The RING 2.0 Web Server for High Quality Residue Inter-action Networks. Nucleic Acids Res 2016, 44, W367–W374, doi:10.1093/nar/gkw315.