Toxicity Assessment of Cashew Nut Shell Methanol Extract on Hematology and Redox Status in Lungs and Liver of Wistar Rats

Main Article Content

Adeleke G.E.
Adedeji L. A.
Ojurongbe T.E.
Adedoyin E.D.
Orisadiran P.K.
Kamorudeen I.B.
Yusuf M.O.

Abstract

This study examines the effects of Cashew nut shell methanol extract (CNSME) on hematology, antioxidant parameters and histopathology in lungs and liver of rats.  Forty-five male Wistar rats were used for the study, being divided into nine groups - A, B, C, D, E, F, G, H and I (five rats per group). The groups were orally intubated with corn oil (Control), 50, 100, 150, 200, 250, 300, 350 and 400 mg/kg of CNSME, respectively, every other day. After twenty-eight days, the rats were sacrificed under chloroform anesthesia. Blood was collected into EDTA bottles for determination of red blood cell (RBC) and mean corpuscular hemoglobin (MCH). Lungs and liver were excised and divided into two portions each.  One portion was fixed in 10% formalin for histology, while the other was processed into homogenates for spectrophotometric assays of Superoxide dismutase (SOD) and catalase activities. The CNSME slightly reduced RBC, and increased MCH levels relative to controls. Both SOD and catalase were increased in lungs and liver, and reduced in liver and lungs, respectively by CNSME against controls. Rats given 250 and 400 mg/kg of CNSME showed degenerated pulmonary parenchyma in lungs, whereas liver showed heamoragic congestion in central venules, pyknotic hepatocytes and fibrosis. These lesions were not observed in controls and rats given 50 mg/kg of CNSME. In conclusion, high doses of cashew nut shell methanol extract could induce cytological damage in lungs and liver of rats via redox disruption, without any adversely effect on the red blood cell groups.

Article Details

How to Cite
G.E., A. ., Adedeji L. A., Ojurongbe T.E., Adedoyin E.D., Orisadiran P.K., Kamorudeen I.B., & Yusuf M.O. (2022). Toxicity Assessment of Cashew Nut Shell Methanol Extract on Hematology and Redox Status in Lungs and Liver of Wistar Rats. International Journal of Pharmaceutical and Bio Medical Science, 2(9), 339–346. https://doi.org/10.47191/ijpbms/v2-i9-02
Section
Articles

References

I. Nakasone HY, Paull RE (1998). Tropical Fruits. CAB International, Oxford, UK.

II. Adeigbe O.O, Olasupo F.O, Adewale B.D, Muyiwa A.A (2015). A review on cashew research and production in Nigeria in the last four decades. Vol.10 (5) pp.196-209

III. Souza N. O., Cunha DA., Rodrigues N.S., Pereira A. L., Medeiros E. J. T., Pinheiro A.A., de Vascocelos M.A., Neito L.G.N., Bezerra T. T. et al. (2022). Cashew nut shell liquids: Antimicrobial compounds in prevention and control of the oral biofilms. Archives of oral Biology. 133: 105299.

IV. Trevisan MTS, B Pfundstein, R Haubner, G Würtele, B Spiegelhalder, H Bartsch, RW Owen (2006). Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity.Food and chemical toxicology 44(2), 188-197.

V. Santos G, Silva E, Silva B, Sena K, Lima C. (2011) Influence of gamma radiation on the antimicrobial activity of crude extracts of Anacardium occidentale L., Anacardiaceae, rich in tannins. Rev Bras Farmacogn. 21:444–9.

VI. Orwa C., Mutua A., Kindt R., Jamnadass R., Simons A., (2009). Agroforesttree Database: A tree reference and selection guide version 4.0.

VII. Asogwa E.U., Anikwe J.C., Ndubuaku T.C.N., Okelana F.A. (2009). Distribution and damage characteristics of an emerging insect pest of cashew, Plocaederusferrugineus L. (Coleoptera: Cerambycidae) in Nigeria: A preliminary report. Afr. J. Biotechnol. 8 (1):053-058.

VIII. Hammed L.A., Lawal B.A., Kolapo K.A. (2011). Growth and nutrient uptake of cashew (Anacardium occidentale L.) seedlings as affected by nut size in the nursery. Afr. J. Agric. Res. 6 (17):3962-

IX. Agricultural Research Service – United States Department of Agriculture. (2015) “Full report (All Nutrients): 12087, Nuts, cashew nuts, database version SR 27”

X. Eça K.S., Machado M.T.C., Hubinger MD, Menegalli F.C. (2015). Development of active films from pectin and fruit extracts: light protection, antioxidant capacity, and compounds stability. J Food Sci. 80:C2389-96.

XI. Silva L.M.R., Lima A.C.S., Maia A.G, Sousa P.H.M., Gonzaga M.L.C, Ramos A.M., (2017). Development of mixed nectar of cashew apple, mango and acerola. Int Food Res J. 24: 232-7.

XII. Abreu VKG, Pereira ALF, Freitas ERD, Trevisan MTS, Costa JMCD (2014). Effect of anacardic acid on oxidative and color stability of spray dried egg yolk. LWT Food Sci. Technol. 55:466-471.

XIII. Maia JGS, Andrade EHA, Zoghbi MDGB (2000). Volatile Constituents of the Leaves, Fruits and Flowers of Cashew (Anacardium occidentale L.). J. Food Compost. Anal. 13:227-232.

XIV. Adeleke GE., Ogunmola IA and Berena GA. (2022a). Spectroscopic and Chromatographic Characterization of Anacardium occidentale nut Shell Extract its Enzyme Responses in Periplaneta americana (Cockroach). International Journal of Current Research and Academic Review. 10(3): 1-14.

XV. Razali N, Razab R, Junit SM, Aziz AA. (2008). Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale). Food Chem,; 111: 38-44.

XVI. Jaiswal YS, Tatke PA, Satish Y, Gabhe SY, Vaidya A. (2010). Antioxidant activity of various extracts of leaves of Anacardium occidentale (cashew). Res J Pharm Biol Chem Sci, 1: 112-119.

XVII. Chan EWC, Tan YP, Chin SC, Gan LY, Kang KX, Fong CH, Chang HQ, How YC. (2014). Antioxidant properties of selected fresh and processed herbs and vegetables. Free Radical Antioxid, 4: 39-46.

XVIII. Melo-Cavalcante AA, Dantas SM, Leite Ade S., Matos LA, Sousa JM, Picada JN, Da Silva J. (2011). In-vivo antigenotoxic and anticlastogenic effects of fresh and processed cashew (Anacardiumoccidentale) apple juices. J. Med. Food 14:792-798.

XIX. Hollands A., Corriden R., Gysler G., Dahesh S., Olson J., Ali S. R., Kunke M.T., Lin A. E., Forli S., Newton A. C., Kumar G.B., Nair B.G., Perry J.J.P., Nizet V. (2016). Natural products anacardic acid from cashew nut shells stimulates neutrophil extracellular trap production and bacterial activity. Journal of Biological Chemistry. 291 (27): 13964-13973.

XX. Haung H., Hua X., Liu N., Li X., Liu S., CHEN X., Zhao C., Lan X., Yang C., Dou Q.P., Liu J (2014). Anacardic acid induces cell apoptosis associated with ATF-4dependent endoplasmic reticulum stress. Toxicology Letters. 228(3): 170-178.

XXI. Salehi B., Gültekin-Özgüven M.,, Kirkin C.,, Özçelik B, Morais-Braga M.F.B, Carneiro J.N.P., Bezerra C.F., da Silva T.G. et al. (2020). Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethno-pharmacological Perspective. Frontiers in Endocrinology, 11 (295): 1-16.

XXII. Jebapritha SDS and Karpagam S. (2017). Phytochemical content content and antimicrobial activity of cashew nut shell oil. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS). 2017; 12 (4): 61-64.

XXIII. Sung B., Pandey M. K., Ahn K. S., Yi T., Chaturvedi M.M., Liu M., Aggarwal B.B. (2008). Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-Kb-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kB kinase, leading to potentiation of apoptosis. Blood. 111 (10): 4880-4891.

XXIV. De Souza MQ., Teotônio IMSN., de Almeida FC., Heyn GS., Alves PS.,Romeiro LAS., Pratesi R.. de Medeiros Nóbrega YK., Pratesi CB. (2018). Molecular evaluation of anti-inflammatory activity of phenolic lipid extracted from cashew nut shell liquid (CNSL). BMC Complement. Altern. Med. 18, 181.

XXV. Santos AT., Guerra G., Marques JI., Torres-Rego M., Alves JSF., Vasconcelos RC., Araujo D et al. (2020). Potentialities of cashew nut (Anacardium occidentale) by-product for pharmaceutical applications: Extraction and purification Technologies, Safety, anti-inflammatory and anti-arthritis activities. Revista Brasileira de Farmacognosia. 30 (5): 1-15.

XXVI. Adeleke GE., Adedosu1 OT.., Olayioye A., Olaniyi AA., Aderoju VB., Akintaro OO. (2021). In-vitro Pesticidal effects of Water hyacinth leaf and Cashew nut shell extracts against Acanthoscelides obtectus and Zonocerus variegatus. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 15, (Issue 5 Ser. II): 36-48.

XXVII. Adeleke GE., Adedosu OT., Adeagbo DP., Oyebamiji AJ., Adegboyega TE., Babalola KD., Adegbola PI., Gbolagade AM. (2022b). Toxicological Profile of Anacardium occidentale Nut Shell Extract on Hematologic and Antioxidant Parameters in Brain and Testicular Tissues of Wistar Rats. Int. J. of Sci. and Res. (IJSR). 11 (3): 1533-1540.

XXVIII. Okereke G., Okezie E., Ude V., Ekweogu CN., Ikpeazu V.O., Ugbogu E.A. (2020). Physicochemical characterristics, acute and sub-acute toxicity of Cashew nut shell oil in Wistar rats. Scientific African. 8: e00391.

XXIX. Ugochukwu A.P, Nse A., Jeremiah O.J., Chinasa I., Samuel C.U., et al., (2015). The effect of subchronic low dose of DDVP and sodium azide on the hematological indices of albino rats. World J Pharm Pharmaceut Sci. 4: 103-110.

XXX. Lowry OH, Rosbrough NJ, Farr AL., et al. (1951). Protein measurement with the Folin- phenol reagent. J. Biol. Chem. 193: 265-275.

XXXI. Misra HP and Fridovch J. (1975). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247: 3170-3175.

XXXII. Aebi H. (1984). Catalase in vitro. In: Packer L. Editor. Methods in Enzymology. Orlando FL: Academic Press. Pp. 121-126.

XXXIII. Paglia D.E., Valentine W.N. (1967).Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab Clin. Med. 70: 158-169.

XXXIV. Habig W, Pabst M, Jakoby W. (1974). Glutathione S-transferase. The first enzymatic step in mercapturic acid formation.J Biol Chem. 249: 7130–7139.

XXXV. Ohkawa H, Ohishi N, Yagi K. (1979). Assay for lipid peroxides in animal tissues by Thiobarbituric acid reaction. Anal Biochem. 95:351-358.

XXXVI. Asogwa E. U., Hammed L. A., and Ndubuaku T. C. N. (2008). Integrated production and protection practices of cashew (Anacardium occidentale) in Nigeria. Afr. J. Biotechnol. 7:4868–4873.

XXXVII. Dröge W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82(1):47–95.

XXXVIII. Blokhina O., Virolainen E., Fagerstedt K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 91 Spec No:179–94

XXXIX. Tsamesidis I., Pantalla A., Pekou A., Gusani A., Iliadis S., Makedou K., Manca A., Carrauale A., Lymperaki E., Fozza C (2019). Correlation of Oxidative stress biomarkers and hematological parameters in blood cancer patients from Sardinia, Italy. Int. J. Hematol. Onco Stem Cell Res. 13(2): 49-57.

XL. Wadley AJ, Veldhuijzen van Zanten JJ, Aldred S. (2013). The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: the vascular health triad. Age (Dordr). 35:705–18.

XLI. Phaniendra D.B.J., Periyasamy L. (2015). Freeradicals: properties, sources, targets, and their implicationin various diseases. Ind. J. of Clin. Biochem. 30 (1): 11-26.

XLII. Bansal A., Simon M.C. (2018). Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 217:2291- 2298.

XLIII. Oncu M., Gultekin F., Karaoz E., Altuntas T., Delibas N. (2002), Klorprifos Etil tarafindan olusturulan oksidatif hasarin sucan karacigerine etkileri. Turkiye Klinikleri. Journal of Medical Sciences. 22(1): 50-55.

XLIV. Sukprasansap M., Chanvorachote P., Tencomnao T. (2017). Clestcalyxnervosum var. paniala berry fruit protects neuroxicity against endoplasmic reticulum stress-induced apoptosis. Food Chem. Toxicol. 103: 279-288.

XLV. Jakubczyk K., Dec K., Kaldunska J., Kawczuga D., Kochman J., Janda K (2020). Reactive oxygen species: sources, functions, oxidative damage. Pol Merkur Lekarski. 48(284): 124-127.

XLVI. Ha H.Y., Shin H.J., Feitelson M. A., Yu D.Y. (2010). Oxidative and antioxidants in hepatic parthenogenesis. World J. Gastroenterol. 16(48): 6035–60436

XLVII. Rogers L.K., Cismowski M.J (2018). Oxidative stress in the lung- The essential paradox. Curr. Opin Toxicol. 7: 37-43.

XLVIII. Thimmulappa R. K., Chattopadhway I., Rajasekaran S. (2019). Oxidative stress mechanisms in the parthenogenesis of environmental lung diseases. Oxidative Stress in Lung Diseases 25: 103-137.

XLIX. Margis R., Dunand C., Teixeira F.K., Margis-Pinheiro M. (2008). Glutathione peroxidase family - an evolutionary overview. FEBS J. 275: 3959-3970.

L. Arcdenaz N., Yang XP., Cifuentes ME., Haurani MJ., Jackson KW., Liao TD., Carretero OA., Pagano PJ. (2010). Lack of Glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in Angiotensin II hypertension. Hypertension, 55: 116-123.

LI. Serra DS. Arajo RS., Olivereira MLM., Cavalcante FSA, Leal-Cardoso JH. (2021). Lung injury caused by occupational exposure to particles from the industrial combustion of cashew nut shells: a mice model. Arch Environ Occup Health. 76 (1): 1-11.

LII. Petry A.L.N.C., Annoni R., Torres L.H.L, Brandao A.C.C.S.D., Shimada A.L.B., Almaeida F.M et al. (2013). Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice. Evidenced-based Complementary and Alternative Medicine. 2013 (1): 549879