International Journal of Pharmaceutical and Bio-Medical Science

ISSN(print): 2767-827X, ISSN(online): 2767-830X

Volume 05 Issue 04 April 2025

Page No: 263-271

DOI: https://doi.org/10.47191/ijpbms/v5-i4-08, Impact Factor: 8.163

Effects of Various Therapeutic Exercises on Gait and Balance in Idiopathic Parkinson's Disease: A Narrative Review

Shagun¹, Dimple Choudhry², Surekha Dabla³, Zafar Mohammad⁴

- ^{1,4}MPT Scholar, College of Physiotherapy, Pt BDS PGIMS Rohtak
- ²Associate Professor, College of Physiotherapy, Pt BDS PGIMS Rohtak
- ³Professor, Department of Neurology, Pt BDS PGIMS Rohtak

ABSTRACT

Background: Parkinson's disease (PD) is the second most prevalent neurodegenerative illness after Alzheimer's disease. It affects approximately 1-2 people per 1000, with prevalence increasing with age, impacting 1% of those over 60. The disease is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in reduced dopamine levels in the striatum and leading to motor symptoms such as bradykinesia, rigidity, tremor, and postural instability. These motor impairments contribute to significant mobility and postural control issues, increasing the risk of falls and negatively affecting patients' quality of life. Freezing of gait is a common and challenging symptom that further complicates mobility and increases fall risk. Given the progressive nature of PD and its impact on motor function, this review aims to compile and assess the effectiveness of various therapies in enhancing gait and balance in individuals with Idiopathic Parkinson's Disease.

Objective: This narrative review aims to synthesize and evaluate the effectiveness of various therapeutic interventions designed to improve gait and balance function in patients with Idiopathic Parkinson's Disease.

Study Selection: A literature search was conducted across PubMed, Google Scholar, and Research Gate databases to identify relevant studies investigating interventions for gait and balance in PD.

KEYWORDS: Parkinson's disease, Gait, Balance, Rehabilitation, Shaking palsy

ARTICLE DETAILS

Published On: 21 April 2025

Available on: https://ijpbms.com/

INTRODUCTION

Parkinson's disease (PD) is a chronic, progressive neurodegenerative disorder that primarily affects the motor system due to the selective loss of dopaminergic neurons in the substantia nigra pars compacta. First described by James Parkinson in 1817 as the "shaking palsy," PD is the second most common neurodegenerative disease after Alzheimer's disease, with an estimated global prevalence of over 10 million individuals. The disease predominantly affects individuals over the age of 60, though early-onset cases exist. Despite significant advances in research, the precise etiology of PD remains unclear, with genetic, environmental, and aging-related factors playing contributory roles in its onset and progression.²

The etiology of Parkinson's disease is multifactorial, influenced by a combination of genetic and environmental factors. While the majority of PD cases are sporadic, around 10-15% have a hereditary component. Several genetic mutations have been linked to the disease, including those in the SNCA (alpha-synuclein), LRRK2 (leucine-rich repeat kinase 2), PARK2 (parkin), PINK1, and DJ-1 genes. Among these, mutations in SNCA are particularly significant, as alpha-synuclein is a primary constituent of Lewy bodies, a hallmark of PD pathology.³ Environmental factors also play a crucial role, with prolonged exposure to pesticides, herbicides like paraquat and rotenone, and heavy metals being associated with an increased risk of developing PD. Living in rural areas and consuming well water have also

Effects of Various Therapeutic Exercises on Gait and Balance in Idiopathic Parkinson's Disease: A Narrative Review

been suggested as environmental risk factors.⁴ Aging remains the most important risk factor for PD, with age-related factors such as mitochondrial dysfunction, oxidative stress, and diminished neuroprotective mechanisms contributing to neuronal degeneration, particularly in older individuals.⁵ These genetic and environmental factors together shape the onset and progression of Parkinson's disease.

The pathophysiology of Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra, leading to a dopamine deficiency in the striatum and disrupted basal ganglia circuits, which impair motor control and cause typical PD symptoms like tremors and bradykinesia.⁶ A key pathological feature is the presence of Lewy bodies, misfolded alpha-synuclein protein aggregates that contribute to neurotoxicity and neuronal loss.⁷ Neuroinflammation, involving activated microglia and astrocytes, further exacerbates neurodegeneration. Mitochondrial dysfunction, particularly in complex I of the electron transport chain, leads to oxidative stress and neuronal apoptosis.⁵ Additionally, prion-like propagation of misfolded alpha-synuclein spreads neurodegeneration across the central nervous system, driving disease progression.⁷ These mechanisms collectively contribute to the progression of Parkinson's disease.

Parkinson's disease presents with a combination of motor and non-motor symptoms that worsen over time. Key motor symptoms include bradykinesia (slowness of movement), resting tremor (often asymmetric, pill-rolling), rigidity (increased muscle tone), and postural instability (leading to balance issues and falls in later stages). 1 Nonmotor symptoms significantly affect quality of life, with cognitive impairment and dementia occurring in later stages, and depression and anxiety being common throughout. Autonomic dysfunction includes issues like orthostatic hypotension, constipation, and urinary problems, while sleep disorders such as REM sleep behavior disorder and excessive daytime sleepiness are prevalent. Olfactory dysfunction, or reduced sense of smell, is often an early symptom. These motor and non-motor features together shape the clinical presentation of PD.3

Although there is no cure for Parkinson's disease, treatment focuses on symptomatic relief through pharmacological therapies, physical and occupational therapies, and, in some cases, deep brain stimulation to improve motor function and quality of life.

Pharmacological treatment is a cornerstone in managing Parkinson's disease (PD), primarily focused on enhancing dopamine activity in the brain. Levodopa (L-DOPA) is the most effective medication, converted into dopamine, and is commonly combined with carbidopa to prevent peripheral metabolism and ensure better central availability. Dopamine agonists, such as pramipexole and ropinirole, mimic dopamine's action and are used in early stages of PD or as adjuncts to other therapies. Monoamine oxidase B (MAO-B) inhibitors, like selegiline and rasagiline, slow the breakdown

of dopamine, prolonging its effects. Catechol-O-methyltransferase (COMT) inhibitors, including entacapone and tolcapone, extend the duration of levodopa's action by inhibiting its metabolism. Additionally, amantadine is prescribed to manage levodopa-induced dyskinesia, helping to reduce involuntary movements. These medications work synergistically to manage PD symptoms, improve motor control, and enhance the overall quality of life for patients. Deep Brain Stimulation (DBS) is a surgical treatment for advanced Parkinson's disease that involves implanting electrodes in the subthalamic nucleus or globus pallidus internus, effectively reducing motor fluctuations and dyskinesia.

Physiotherapy plays a vital role in the management of Parkinson's disease, aiming to improve mobility, balance, and functional independence in individuals with the condition. A comprehensive physiotherapy approach involves various strategies, such as aerobic exercise, which enhances neuroplasticity and motor performance, helping to reduce the progression of PD symptoms. Regular cardiovascular exercise, such as walking or cycling, promotes brain health and improves physical endurance. Balance and gait training techniques, including treadmill training, external cueing, and Tai Chi, significantly reduce the risk of falls and improve movement fluidity, addressing common motor impairments in PD. Additionally, strength training is essential for combating muscle rigidity and weakness, helping to maintain joint mobility and improve posture. One specialized approach, LSVT BIG Therapy, emphasizes large-amplitude movements to counteract bradykinesia, facilitating smoother and more effective motor function.⁹ Finally, dual-task training enhances cognitive-motor interactions by challenging individuals to perform simultaneous tasks, improving both cognitive processing and motor performance during daily activities. 10 Together, these physiotherapy interventions contribute to better disease management, improving both the physical and cognitive aspects of life for those living with Parkinson's disease.

METHOD

This narrative review synthesized and evaluated the effectiveness of various treatments for improving gait and balance in individuals with Idiopathic Parkinson's Disease. Relevant studies were identified through searches of the PubMed, Google Scholar, and Research Gate databases. The keywords that search strategy employed are Parkinson's disease, Gait, Balance and Rehabilitation.

A total of 30 records are retrieved from multiple search databases 20 records undergo evaluation based on their titles and abstracts 9 studies are excluded as they do not meet the inclusion criteria 11 Studies are thoroughly reviewed and included in this analysis

Authors, Journal, Year	Objectives	Design	Characteristi cs of participants	Material and Methods	Outcom es Measur	Results
			sample size		es	
Ganesan, M.,	То	Prospect	N = 60 with	Patients were	The	PWSTT may
et al.	investigate	ive	PD fulfilling	randomly assigned	Unified	be a better
$(2014)^{11}$	the role of	randomi	the United	to 3 groups:	Parkinso	interventiona
	convention	zed	Kingdom	Control:	n	1 choice than
	al gait	controll	Brain Bank PD	Dopaminomimetic	Disease	CGT for gait
	training	ed trial	diagnostic	drugs only. CGT	Rating	and balance
	and partial		criteria	(conventional gait	Scale	rehabilitation
	weight-			training): Drugs	(UPDRS	in patients
	supported			with conventional),	with PD.
	treadmill			gait training.	dynamic	
	gait			PWSTT: Drugs	posturog	
	training			with PWSTT with	raphy,	
	(PWSTT)			20% body weight	Berg	
	in			unloading.	Balance	
	improving			Sessions lasted 30	Scale,	
	the balance			minutes, 4 days a	and	
	of patients			week, for 4 weeks	Tinetti	
	with			(16 sessions).	performa	
	Parkinson				nce-	
	disease				oriented	
	(PD).				mobility	
					assessme	
					nt	
					(POMA)	
Patel NN, et	Effect of	An	N = 20	20 patients with	Dynamic	The results
al. (2017) ¹²	otago	interven	Age 45 to 65	Parkinson's disease	gait	suggest that
	exercises	tional	years.	with age group	index,	both balance
	on balance	study	1. No	from 45-65 years	berg	function
	and gait		previous	were included. All	balance	(BBS) and
	affection in		diagnosis	the patients with	scale	gait function
	patients		of	Parkinson's disease		(DGI) are
	with		vestibular	were		Improve but
	parkinson's		dysfunctio	given a 6 weeks		Gait function
	disease		n.	protocol of otago		(DGI) is
			2. History of	exercise to improve		more

			fall.	balance and gait.		Improve than
			3. Sufficient	barance and gait.		balance
			cognitive			function
			ability to			(BBS) of the
						Parkinson's
			participate			
			, as			subjects.
			indicated			
			by MMSE			
			4. score of			
			24 or			
			higher			
Pandya S, et	This study	An	N = 30	Group A was	Subjects	Pilates
al. (2017) ¹³	is to	Interven	Idiopathic	treated with	were	interevention
	determine	tional	Parkinson's	Conventional	assessed	with
	the	Study	Disease Age	Physiotherapy and	at	conventional
	effectivene		Group:- < 65	Group B was	baseline	balance
	ss of		years Both	treated with Pilates	and 7th	training is
	Pilates		Males and	exercises with	week	more
	Training		Females	Conventional	(post-	effective than
	over		Diagnosed	Physiotherapy.	intervent	conventional
	Conventio		with Idiopathic	January My	ion).	balance
	nal		Parkinson's		Outcome	training alone
	Balance		Disease (IPD)		measure	to improve
	Training		for over a year.		s were	functional
	on balance		On stable		taken for	balance,
	in		medication.Hi		BBS,	confidence
			story of falls or		ABC	
	participant s with		near-falls in		and	level and functional
	Idiopathic		the last two		TUG for	activities in
	Parkinson'		years. No prior		assessme	participants
	s Disease.		physical		nt and	with
			therapy or		analysis.	Idiopathic
			regular			Parkinson's
			exercise.			Disease.
			MMSE score			
			≥24 (no			
			significant			
			cognitive			
			impairment).		<u> </u>	<u></u>
Carroll,	То	Single-	N=21	Participants were	Primary	People in the
Louise M. et	evaluate	blind	Individuals	randomly assigned	Outcome	aquatic
al. (2017) ¹⁴	the effects	randomi	with PD	to either an aquatic	: Gait	therapy group
	of aquatic	zed	(Hoehn-Yahr	exercise therapy	variabilit	and usual
	exercise	controll	stages I–III)	group (45min,	y	care group
	therapy on	ed trial.		twice a week for	(motion	showed
	gait			6wk) or a group	capture).	similar small
	variability			that received usual	Seconda	improvement
	and			care.	ry	s in gait
	disability			· · · · ·	Outcome	variability.
	compared				s:	, and and integral
	with usual				Quality	
	care for				of life	
					(PDQ-	
	people				` -	
	with				39),	
	Parkinson				freezing	

	1				. C	
U.Feng H, et al. (2019) ¹⁵	The aim of this study	A single-	N = 28 Hoehn-Yahr	The experimental group received VR	of gait, motor disabilit y (UPDRS). Feasibili ty: Safety, adverse events, participa nt satisfacti on. Individu als were	After treatment,
Calmara	was to investigate the effect of virtual reality (VR) technology on balance and gait in patients with Parkinson's disease (PD).	blinded, randomi zed, controll ed study.	classification grade 2.5-4 age 50 to 70 years old; signed informed consent	training, and the control group received conventional physical therapy. Patients performed 45 minutes per session, 5 days a week, for 12 weeks.	assessed pre- and post-rehabilit ation with the Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), Third Part of Unified Parkinso n's Disease Rating Scale (UPDRS 3), and Function al Gait Assessment (FGA).	BBS, TUGT, and FGA scores had improved significantly in both groups (P<0.05). However, there was no significant difference in the UPDRS3 between the pre- and post-rehabilitation data of the control group (P>0.05). VR training resulted in significantly better performance compared with the conventional physical therapy group (P<0.05).
Cabrera- Martos I, et al. (2020) ¹⁶	To explore the effects of an eight- week core stability program on balance	Random ized controll ed trial.	N = 44 aged 30 years or older and being diagnosed with Parkinson's disease	The experimental group received 24 sessions of core training, while the control group received an intervention	Primary Outcome : Mini- Balance Evaluati on Systems	After treatment, a significant betweengroup improvement in dynamic
	ability in		2 or 3 on the	including active	Test.	balance was

Effects of Various Therapeutic Exercises on Gait and Balance in Idiopathic Parkinson's Disease: A Narrative Review

	persons		Hoehn and	joint mobilization,	Seconda	observed in
	with		Yahr scale	muscle stretching,	ry	the
	Parkinson'			and motor	Outcome	experimental
	s disease.			coordination	s:	group
	s disease.			exercises.	Activitie	compared to
				CACICISCS.		the control
					S-	
					specific	group
					Balance	
					Confide	
					nce	
					Scale.	
					Standing	
					balance	
					(Maxima	
					1	
					excursio	
					n of	
					center of	
					pressure,	
					Modifie	
					d	
					Clinical	
					Test of	
					Sensory	
					Interacti	
					on on Balance,	
					•	
					Limits of	
					Stability	
					test).	
Çoban F, et		A	N = 40	Patients were	One-leg	Study
al. (2021) ¹⁷	*	randomi	patients with	randomly assigned	stance	showed that
		zed	Hoehn and	into either clinical	(OLS)	clinical
		controll	Yahr stage 2–3	Pilates (CLP) or	test and	Pilates
		ed trial	PD aged 45–70	conventional	tandem	exercises had
	convention		years who had	physiotherapy (CO	stance	positive
	al		a Mini-Mental	P) group. Exercises	test	effects on
	physiother		Test (MMT)	were performed	(TST)	balance,
	apy		score of at least	twice a week for 8	function	functional
	exercises		26 and had PD	weeks.	al reach	mobility,
	on balance		for a minimum		test	lower-
	and		of 2 years		(FRT)	extremity
	postural				TUG test	strength and
	control in				30-	fall risk in
	Parkinson'				second	individuals
	s disease				chair-	with PD
					stand	
					test Berg	
					Balance	
					Scale	
					(BBS)	
Color II -	The aim of	Λ	N = 105	Dationta		Doth
Gaßner H, et		A	N = 105	Patients were	Primary	Both
al. (2022) ¹⁸		randomi	age between	randomly assigned	outcome	interventions
		zed	30 and	into either	S . 1 1 1	significantly
	investigate		90 years and	Treadmill group or	included	improved gait

Biebl JT, et	apy or treadmill training on gait during dual task performan ce.	A	Endurance Handrail Independence Cognitive Ability N = 36	sessions of 25 min each and additional group therapy sessions for 14 days. Group A received	relevant gait paramete rs, such as stride length and swing time Seconda ry outcome s were the UPDRS- III and the Berg Balance Scale (BBS) Primary	task walking as well as clinical parameters and walking capacity in patients.
Biebl J1, et al. (2022) ¹⁹	objective of this study is to evaluate and compare the effects of two integrative interventions on gait and balance of patients with PD.	randomi zed controll ed pilot study	N = 36 Patients diagnosed with PD according to the Queen Square Brain Bank criteria, Hoehn and Yahr stage II- III	resistance training in combination with gait training (gait resistance training, GRT) or Group B received resistance training in combination with balance training (stability resistance training, SRT) twelve sessions lasting 30 minutes over six weeks.	outcome s: function al reach (balance) and stride	Integrative therapies, combining gait or balance training with resistance training, have specific positive effects in PD rehabilitation .
T.S Megha,et al. (2023) ²⁰	To determine the effect of core muscle training on	A randomi zed controll ed trial	N = 30 clinically diagnosed cases of IPD, 2, 2.5, 3 Modified	Group A received core muscle training, with conventional exercise while Group B received	Tinetti POMA – Balance compone nt and Function	Core muscle training along with conventional physiotherap y are

	balance	Yahr staging,	physiotherapy	Assessm	improving
	and gait	age 50-65	alone. Duration of	ent	balance and
	performan	years, on stage	treatment was 5	(FGA)	gait
	ce in	of levodopa,	days /week for 6	used to	performance
	Idiopathic	MoCA score	weeks.	assess	in Idiopathic
	Parkinson'	greater than or		balance	Parkinson's
	s disease	equal to 26.		and gait	disease.
				respectiv	
				ely.	
Tariq S, et al.	To A	A total of 28	Group A received	Outcome	Both
$(2025)^{21}$	compare compar	a patients	VR-based training	s were	interventions
	the effects tive	diagnosed with	sessions, while	assessed	significantly
	of virtual random	i PD (Hoehn	Group B	using the	improved
	reality zed	and Yahr	underwent task-	Berg	balance and
	rehabilitati control	stages 2–3),	oriented exercises,	Balance	gait in
	on and ed trial	aged 50–70	with both	Scale	Parkinson's
	task-	years	interventions	(BBS),	patients.
	oriented		delivered thrice	Timed	However, VR
	training on		weekly for eight	Up	rehabilitation
	dynamic		weeks.	and Go	demonstrated
	balance			Test	superior
	and gait			(TUG),	efficacy,
	performan			and	emphasizing
	ce among			Function	its potential
	patients			al Gait	as a more
	with			Assessm	effective
	Parkinson'			ent	therapeutic
	s disease.			(FGA).	modality.

DISCUSSION

The studies included in this review highlight a variety of therapeutic interventions aimed at addressing gait and balance impairments in individuals with Idiopathic Parkinson's Disease. A consistent finding across several studies is the positive impact of exercise-based interventions. Studies investigating Otago exercises, Pilates training, core stability programs, VR training, treadmill training and aquatic exercise therapy all demonstrated improvements in balance and gait parameters, reinforcing the importance of exercise as a key component of PD management. For instance, Patel NN, et al. (2017) found that Otago exercises improved both balance and gait function in Parkinson's subjects.

Gaßner H et al. (2022) revealed that both individualized physiotherapy and treadmill training effectively improve gait during dual-task performance, a crucial aspect for maintaining safe and independent walking. Similarly, T.S Megha, et al. (2023) demonstrated that core muscle training, when combined with conventional physiotherapy, leads to improvements in balance significant and performance. The use of technology-driven interventions, particularly virtual reality (VR) training, was explored in a few studies. Feng H, et al. (2019) indicated that VR training can be a valuable tool for enhancing balance and gait in PD patients. Notably, Tariq S, et al. (2025) suggested that VR

rehabilitation may offer superior efficacy compared to taskoriented training. While the majority of studies reported positive outcomes, there are variations in study design and participant characteristics that make direct comparisons challenging. These variations include differences in sample size, participant age ranges, disease severity (e.g., Hoehn-Yahr stage), and the duration of the interventions.

Furthermore, the studies utilized a range of outcome measures to assess balance and gait, such as the Berg Balance Scale (BBS), Dynamic Gait Index (DGI), Timed Up and Go Test (TUGT), Functional Gait Assessment (FGA), and Tinetti performance-oriented mobility assessment (POMA). This heterogeneity in outcome measures can limit the ability to synthesize findings and draw definitive conclusions about the most effective interventions. For example, while some studies used the BBS to assess balance, others used the Mini-Balance Evaluation Systems Test or dynamic posturography.

CONCLUSION

The reviewed studies suggest that exercise-based therapies, including Otago exercises, Pilates training, core stability training, treadmill training, and aquatic exercise therapy, demonstrate potential benefits for enhancing gait and balance in individuals with PD. Furthermore, technology-driven approaches, such as virtual reality (VR) training, show

Effects of Various Therapeutic Exercises on Gait and Balance in Idiopathic Parkinson's Disease: A Narrative Review

promise as a valuable modality for motor rehabilitation in this population. However, heterogeneity in study designs, participant characteristics, intervention parameters, and outcome measures across the included studies limits the ability to draw definitive conclusions regarding the most effective interventions and highlights the need for further standardized research.

REFERENCES

- Bloem BR, Okun MS, Klein C. Parkinson's disease.
 Lancet. 2021;397(10291):2284-303.
- II. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.
- III. Kalia LV, Lang AE. Parkinson's disease. Lancet. 2015;386(9996):896-912.
- IV. Ascherio A, Schwarzschild MA. The epidemiology of Parkinson's disease: Risk factors and prevention. Lancet Neurol. 2016;15(12):1257-72.
- V. Schapira AH, Olanow CW. Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA Neurol. 2020;77(7):869-871.
- VI. Obeso JA, Rodriguez-Oroz MC, Stamelou M, Bhatia KP, Burn DJ. The expanding universe of disorders of the basal ganglia. Lancet. 2017;390(10198):1785-99.
- VII. Brundin P, Melki R. Prying into the prion hypothesis for Parkinson's disease. J Neurosci. 2017;37(41):9808-18.
- VIII. Goldenberg MM. Medical management of Parkinson's disease. PT. 2008 Oct;33(10):590-606.
- IX. Tomlinson CL, Herd CP, Clarke CE, Meek C, Patel S, Stowe R, et al. Physiotherapy for Parkinson's disease: a comparison of techniques. Cochrane Database Syst Rev. 2013;2013(9):CD002817.
- X. Monika, Choudhry D, Dabla S, Jhandai M. Impact of dual-task training on cognitive function, balance, gait and quality of life in patients with Parkinson's disease: a narrative review. Int J Sci Res. 2024;13(8).
- XI. Ganesan M, Sathyaprabha TN, Gupta A, Pal PK. Effect of partial weight-supported treadmill gait training on balance in patients with Parkinson disease. PM R. 2014 Jan;6(1):22-33.
- XII. Patel NN, Gill N, Mahajan A. Effect of Otago exercises on balance and gait affection in patients with Parkinson's disease An interventional study. Int J Sci Res. 2017 Nov;6.
- XIII. Pandya S, Nagendran T, Shah A, Chandrabharu V. Effect of Pilates training program on balance in participants with idiopathic Parkinson's disease-an interventional study. Int J Heal Sci Res. 2017 May;7:186-96.

- XIV. Carroll LM, Volpe D, Morris ME, Saunders J, Clifford AM. Aquatic Exercise Therapy for People With Parkinson Disease: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2017 Apr;98(4):631-638.
- XV. Feng H, Li C, Liu J, Wang L, Ma J, Li G, Gan L, Shang X, Wu Z. Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson's Disease Patients: A Randomized Controlled Trial. Med Sci Monit. 2019 Jun 5:25:4186-4192.
- XVI. Cabrera-Martos I, Jiménez-Martín AT, López-López L, Rodríguez-Torres J, Ortiz-Rubio A, Valenza MC. Effects of a core stabilization training program on balance ability in persons with Parkinson's disease: a randomized controlled trial. Clin Rehabil. 2020 Jun;34(6):764-772.
- XVII. Çoban F, Belgen Kaygısız B, Selcuk F. Effect of clinical Pilates training on balance and postural control in patients with Parkinson's disease: a randomized controlled trial. J Comp Eff Res. 2021 Dec;10(18):1373-1383.
- XVIII. Gaßner H, Trutt E, Seifferth S, Friedrich J, Zucker D, Salhani Z, Adler W, Winkler J, Jost WH. Treadmill training and physiotherapy similarly improve dual task gait performance: a randomized-controlled trial in Parkinson's disease. J Neural Transm (Vienna). 2022 Sep;129(9):1189-1200.
 - XIX. Biebl JT, Azqueta-Gavaldon M, Wania C, Zettl O, Woiczinski M, Bauer L, Storz C, Bötzel K, Kraft E. Resistance Training Combined with Balance or Gait Training for Patients with Parkinson's Disease: A Randomized Controlled Pilot Study. Parkinsons Dis. 2022 Oct 7;2022:9574516.
 - XX. Dath TS M, Remya N, Unnikrishnan M, Baby RE, Roy R, Balagopal R. Effect of Core Muscle Training on Improving Balance and Gait Performance in Idiopathic Parkinson's Disease. Int J Health Sci Res. 2023 May;13(5):166-175.
 - XXI. Tariq S, Kabir A, Riaz H, Riaz H, Riaz B, Shah S, Rizwan A. Virtual reality rehabilitation versus task-oriented training for improving dynamic balance and gait among Parkinson's disease patients. Insights-J Health Rehabil. 2025;3:194-200.